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Abstract. Inspired by the first order numerical homogenization, we present a method for extracting
continuous fluctuation fields from the Wang tile based compression of a material microstructure. The
fluctuation fields are then used as enrichment basis in Extended Finite Element Method (XFEM) to
reduce number of unknowns in problems with fully resolved microstructural geometry synthesized by
means of the tiling concept. In addition, the XFEM basis functions are taken as reduced modes of
a detailed discretization in order to circumvent the need for non-standard numerical quadratures. The
methodology is illustrated with a scalar steady-state problem.
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1. Introduction
All materials exhibit heterogeneous microstructure at
certain level of detail. Besides the physical properties
of microstructural constituents, the overall response
is also dictated by their spatial arrangement. With
the advance of numerical methods and computational
power, there is an emphasis on devising approaches
that take the microstructural characteristics into ac-
count and propagate knowledge of material composi-
tion into upper-scale models.

In our contribution, we focus on problems in which
the underlying microstructural geometry is explicitly
known. We consider problems where the character-
istic length of the microstructure is comparable to
the dimension of an upper-scale model; hence, the
nested numerical homogenization, such as the FE2

method [1], is not applicable because the underlying
assumption of the separation of scales is violated [2,
and references therein].

This work supplements our previous results regard-
ing efficient modelling of materials with stochastic
heterogeneous microstructure, e.g., [3, 4]. The mi-
crostructural geometry of a macro-scale model—as
well as its finite element discretization—is synthesized
using the Wang tiling concept, recalled in Section 2.
Here, we present a method to extract dominant re-
sponses of a compressed microstructure to prescribed
macroscopic loading. We reuse the extracted responses
to synthesize a microstructure-informed enrichment
basis in order to accelerate the upper scale calculations.
The numerical scheme, outlined in Section 4, combines
eXtended Finite Element Framework (XFEM) [5, 6,
and references therein], used for definition of local

basis functions, with the reduced order modelling
approach [7], allowing for utilization of standard fi-
nite element procedures. Finally, Section 5 illustrates
the methodology with a two-dimensional problem of
steady-state thermal conduction in an L-shaped do-
main.

2. Wang tiling concept
Microstructure of random heterogeneous materials
is usually represented by means of a periodic finite-
size model—appearing in the literature under various
names such as Statistically Optimal Representative
Unit Cell, Statistically Similar Representative Volume
Element, or Statistically Equivalent Periodic Unit Cell
(SEPUC)—that resembles the material in terms of
various spatial statistics. This setting is particularly
suitable for the family of FE2 simulations,e.g., [1], in
which it is often accompanied with periodic boundary
conditions imposed at the micro-scale level. How-
ever, when used for microstructure synthesis, this rep-
resentation introduces unrealistic, spurious periodic
correlations.
The formalism of Wang tiles represents a compro-

mise between the amount of induced correlation and
complexity of a microstructure representation. In-
stead of a single cell, microstructural information is
compressed into a set of equi-sized Wang tiles with
pre-defined requirements on mutual compatibility. In
the abstract setting, the compatibility constraints are
represented by codes assigned to tile edges, illustrated
with distinct colours in Figure 1. A realization of the
compressed microstructure is then synthesized follow-
ing a simple stochastic algorithm: an empty grid of
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a desired size is sequentially filled with instances of
Wang tiles such that the adjacent tile edges are com-
patible. At each position, a tile is randomly chosen
from a subset of tiles compliant with previously placed
tiles; hence, the algorithm generates stochastic real-
izations, providing that set of tiles is rich enough such
that multiple tiles are admissible at each assembly
step; see Figure 1 for an illustration.

Figure 1. The compressed microstructural geome-
try represented with the set of Wang tiles (top) and
an illustration of a step in the tiling algorithm with
partially assembled microstructure (bottom).

Procedures designed to compress a given microstruc-
ture into a SEPUC can be straightforwardly extended
to take into account generalized periodicity occurring
in the tiling concept, e.g., the standard optimization
procedure based on minimizing discrepancy in the
two-point probability function was used in [3]. We
also adapted a sample-based approach originated in
Computer Graphics in order to address the high com-
putational cost of the optimization-based design [4].
Currently, a variety of material microstructures, rang-
ing from particulate media to complex foam-like mi-
crostructures, can be represented with the framework
of Wang tiling. Individual realizations of the mi-
crostructure are then generated in linear time with
respect to the required sample size, which makes the
tiling concept appealing for applications where multi-
ple microstructure samples are required, e.g., investi-
gation of the RVE size [8].

3. Synthesized enrichments fields
The idea of compressing fluctuation fields using the
Wang tiling concept has been introduced in Novák et
al. [9], where the microstructural geometry of individ-
ual tiles was optimized with respect to (i) meeting
prescribed spatial statistics and (ii) minimizing trac-
tion discrepancies among congruent edges in an auxil-
iary tiling. However, the resulting synthesized stress
fields exhibited unavoidable discontinuities and the
objective function required careful tuning of weight
parameters because the two requirements turned to
be hard to achieve simultaneously. In contrast, the
present method generates continuous fields of the
primal unknowns for any existing microstructure com-
pression.

We illustrate the methodology with the steady-state
heat conduction problem, governed by

∇ · (−K(x) · ∇θ(x)) = 0 , x ∈ Ω , (1)

where θ denotes the unknown temperature field, K is
a local heat conductivity tensor and no heat sources
are considered.

First, we assume the decomposition of θ into a fluc-
tuation part θ̃, caused by the presence of hetero-
geneities, and a macroscopic part controlled with
a macroscopic temperature gradient H,

θ(x) = θ̃(x) + H · x , ∀x ∈ T(i),∀T(i) ∈ S, (2)

where T(i) denotes the domain of the i-th tile and S ={
T(i), i = 1 . . . nT

}
represent the set of nT available

tiles. Without loss of generality, each tile is assumed
centred, i.e., T(i) = [−α, α]2, where 2α is the size of
the tile edge.

In order to enforce continuity of the extracted fields,
all tiles are loaded with the prescribed macroscopic
gradient H and solved simultaneously. Providing that
the tile geometries are discretized with a compatible
triangulation—meaning that discretization of the cor-
responding tile edges is the same across all tiles—the
continuity is ensured by associating the corresponding
edge unknowns during the localization of an element
contribution into the conductivity matrix of the whole
set. The resulting system takes the standard form

KS θ̃ = F (H) , (3)

where KS = AT(i)∈S KT(i) is the conductivity matrix
and F (H) is a H-dependent loading vector arising
from the weak form after plugging Eq. (2) into Eq. (1).
KS has block-diagonal structure similar to primal
domain decomposition approaches.
In addition, two types of constraints are imposed

on the set system. First, we eliminate zero-energy
modes of KS by requirement

1
|S|

∫
S
θ̃(x) dx = 0 . (4)

The second constraint prevents the fluctuation field θ̃
from compensating for the loading induced through H .
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Inspired in numerical homogenization, e.g. [2], we
introduce the second constraint enforcing

1
|Ω|

∫
Ω
∇θ̃(x) dx = 0 (5)

in a chosen domain Ω loaded analogously to Eq. (2).
Using Green’s first identity, Eq. (5) can be recast into
a boundary integral∫

∂Ω
θ̃(x)n(x) dS = 0 , (6)

where n(x) denotes the outer normal of the boundary.
In particular, we consider three mutually exclusive
types of the second constraint:
(K) The first type prescribes zero temperature fluctu-
ations at tile boundaries,

θ̃|∂T(i) = 0 , ∀i = 1 . . . nT , (7)

where ∂T(i) stands for the boundary of the i-th tile.
(P) In the second type, the requirement (6) is posed
tile-wise, i.e.,∫

∂T(i)

θ̃(x)n(x) dS = 0 , ∀i = 1 . . . nT . (8)

(S) The last type imposes Eq. (6) over the whole set,∫
∂S
θ̃(x)n(x) dS = 0 , (9)

where ∂S =
{
∂T(i), i = 1 . . . nT

}
.

Note that (K) corresponds directly to Kinematic Uni-
form Boundary Conditions used in numerical homog-
enization, while (P) and (S) mimic Periodic and Stat-
ically Uniform Boundary Conditions, respectively.
Instead of Eq. (3), the final fluctuations θ̃ follows

from KS CT
I CT

II
CI 0 0
CII 0 0

 θ̃
λI
λII

 =

F(H)
0
0

 , (10)

where CI and CII matrices represent the discretized
versions of Eq. (4) and one of Eqs. (7), (8), or (9), re-
spectively, and λ• stands for the corresponding vector
of Lagrange multipliers.
While CII straightforwardly eliminates edge un-

knowns for the constraint type (K), constructing con-
tributions of individual tile separately and localizing
them into CII leads to an ill-posed problem for types
(P) and (S) From Eq. (6), it clearly follows that if two
opposite sides of a tile are required to be compatible—
hence they feature the same trace of θ̃—the corre-
sponding component of ∇θ̃ average vanishes and so
does the tile contribution to the relevant row in CII.
In addition, the ill-posedness also stems from the rep-
etition of edge code pairs within the tile set (swapping
the order of codes changes only the sign of the edge
contribution to Eq. (5)). In certain cases, this can
even result in zero matrix CII for the least restrictive
constraint (S), in which tile contributions are summed
together.

One way to treat the singularity of CII is to perform
Singular Value Decomposition on the constraint and
take into account only the non-zero singular values;
however, such a procedure is sensitive to numerical
precision. Thanks to the simple structure of the con-
straint, the regular part of the constraint can be di-
rectly established as a projection of the original matrix
CII. First, all nc combinations of edge codes pertinent
to either horizontal or vertical edges are identified and
enumerated. Next, an empty matrix P ∈ R2nT ×nc , for
(P) type of the constraint, or P ∈ R2×nc , for (S) type,
is created and populated with 1 (or −1) if the tile
contains an enumerated pair of codes (or a pair in the
inverse order). Odd and even rows of the matrix cor-
respond to vertical and horizontal edges, respectively.
If P remains empty for (S), CII constraint is discarded
entirely. Otherwise, the non-singular constraint ma-
trix CII, replacing CII in Eq. (10), is obtained from
a projection CII = PTCII.
The outlined strategy allows to define one enrich-

ment field θ̃ for a prescribed H and the selected type of
the second constraint. For the linear problem consid-
ered in this work, two mutually orthonormal loading
cases H =

{
1, 0
}T and H =

{
0, 1
}T cover all possible

load cases. Combined with three types of CII, we can
generate up to six enrichment fields. Note that un-
like the nested numerical homogenization, where the
choice of boundary conditions is based on their suit-
ability in capturing effects of a surrounding medium,
we combine different types of CII to control cardinality
of the set of compressed fluctuations.

Figure 2. A compressed fluctuation field obtained by
prescribing (S) variant of the second constraint and
setting H = {1, 0}T.

4. Numerical strategy
The fields introduced above are employed as enrich-
ments in a upper-scale model whose microstructural
geometry is assembled by means of tiling from the set
depicted in Figure 1.

Assume a upper-scale problem governed by the same
differential equation as in Eq. (1), valid in a upper-
scale domain Ω and accompanied by boundary condi-
tions

θ(x) = θ̂(x) x ∈ Γθ 6= ∅ , (11)
(−K(x)∇θ(x)) · n(x) = q̂(x) x ∈ Γq , (12)

31



M. Doškář, J. Novák, J. Zeman Acta Polytechnica CTU Proceedings

where θ̂ and q̂ are the given temperature and normal
heat flux profiles, respectively, prescribed at parts Γθ
and Γq of the domain boundary ∂Ω. An approximate
numerical solution arises from the weak form of the
problem

Find θ ∈ V such that a(θ, ϑ) = b(ϑ), ∀ϑ ∈ V0 . (13)

and substitutes for the analytical solution that is usu-
ally intractable. In Eq. (13), a(θ, ϑ) and b(ϑ) denote
the bilinear and linear form pertinent to Eq. (1); V
and V0 stand for the space of admissible temperature
fields.

Quality of the approximate solution is governed by
suitability of a finite-dimensional subspace Vc ⊂ V in
which the solution is sought for. In particular, domain
discretization must accurately resolve all geometrical
details in the standard Finite Element (FE) setting.
This requirement leads to very fine meshes in applica-
tions where microstructural geometry of the domain
is involved.

Besides local mesh refinements, the approximation
space can be enhanced by incorporating prior knowl-
edge of local character of the solution. Concretely, in
the Extended Finite Element framework [5, 6], the
approximate solution θc ∈ Vc takes the form

θc(x) =
nc∑
i=1

Ni(x) θi +
nc∑
i=1

ne∑
j=1

Ni(x)ψj(x) θji , (14)

where the first sum contains the standard finite el-
ement shape functions Ni(x) and the second term
adds ne enrichment functions ψj for each discretiza-
tion node; θi denotes the regular Degree Of Freedom
(DOF) associated with finite-element mesh node xi,
θji are the additional DOFs.
In traditional XFEM, only patches of the domain

are usually enriched with ψj , suited for one geomet-
rical feature. Typically, the enrichment provides
asymptotic solution near a crack tip or introduces
strong/weak discontinuities [6]. Here, we add global
enrichments that capture collective response of a ma-
terial microstructure. The original shape functions
Ni(x) model the macroscopic response of the do-
main, while products Ni(x)ψj(x) cover the fluctua-
tions caused by material heterogeneity. A similar idea
was introduced by Strouboulis et al. [10], who used nu-
merical “handbook” functions for assemblies of closely
packed inclusions, or Plews and Duarte [11]. However,
both approaches solve local boundary value problems
defined on subdomains first and subsequently run the
analysis of the whole domain. In contrast, we pre-
compute the fluctuations purely “off-line” at the level
of microstructure compression. i.e., without any in-
formation of the domain geometry or loading, and
construct the enrichments as an assembly of the tile-
defined fluctuation fields.

In our approach, the upper scale discretization
is constructed irrespectively of the underlying mi-
crostructural geometry of Ω. Hence, the approxima-
tion basis functions in the form of Eq. (14) together
with fluctuations in material parameters due to the
presence of microstructural geometry preclude efficient
use of standard numerical procedures for evaluation
of the bi-linear form in Eq. (13).

In order to circumvent this drawback, we construct
another, finer domain discretization space Vf , assem-
bled from the tile discretization used in the off-line
phase for extracting fluctuation fields. The shape
functions Ni(x), defined at the coarser discretization,
are projected onto the fine mesh; enrichments ψj(x)
are already defined within the fine discretization by
construction. Consequently, Eq. (14) can be under-
stood as a definition of reduced modes for the fine
discretization.

Let matrix Φ comprises individual reduced modes as
its columns, computed as an element-wise product of
the projectedNi(x) and ψj(x) following Eq. (14). The
range of Φ thus defines a subspace of Vf corresponding
to Vc. Instead of solving the large, fine-discretization
system Kfθf = Ff , we restrict the fine-discretization
unknowns θf via

θf = Φ a , (15)

where a denotes the vector of unknown coefficients
pertinent to the reduced modes. The final algebraic
system then takes the form

ΦTKfΦa = ΦTFf . (16)

5. Results
We considered the material microstructure of mono-
disperse elliptical inclusions, shown in Figure 1. Both
phases were assumed isotropic, with the inclusion
material being more conductive (K(x) = 100 I) than
the matrix phase (K(x) = 1 I). Six fluctuation fields
in total, discretized with linear triangular elements,
were extracted, see Figure 2.

The microstructure was superimposed to an upper-
scale problem represented by an L-shaped domain
with uniform temperature profiles prescribed at the
bottom and right-hand side edges. The initial coarse
discretization of the domain is depicted in Figure 3.
The linear Lagrange basis functions were assumed
at the coarse level, whilst the fine space comprised
the quadratic Lagrange approximation arising from
the product of linear coarse shape functions and the
enrichments.
The solution θXFEM of Eq. (16) was compared

against Direct Numerical Simulation (DNS) θDNS,
which was taken as the reference solution. A sequence
of five uniformly refined coarse discretizations, the
first one shown in Figure 3, was investigated. The
proximity of the reference (DNS) and XFEM solutions
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θ̂ = 20

10 tx

10 ty

θ̂ = 0
10 tx

10 ty

Figure 3. A scheme of the problem definition. The
edge lengths tx and ty of the tiles were set as tx =
ty = 6. All quantities are in consistent units.

was quantified via relative errors

εL2 =

∥∥θDNS − θXFEM
∥∥
L2

‖θDNS‖L2

and (17)

εH1 =

∥∥θDNS − θXFEM
∥∥
H1

‖θDNS‖H1

, (18)

where

‖u‖2L2
=
∫

Ω
u2(x) dx and (19)

‖u‖2H1
=
∫

Ω
u2(x) +∇u(x) · ∇u(x) dx . (20)

Mean and standard deviations of the errors computed
for five coarse discretizations and six different tiling
realizations are given in Figure 4.

10!4 10!3 10!2

XFEM/DNS DOFs

10!2

10!1

0 0

L2
H1

Figure 4. Convergence of L2 and H1 errors with
increasing number of DOFs in the coarse discretiza-
tion.

6. Conclusions
We have presented a method for extracting continuous
fluctuation fields from a microstructure compressed

by means of Wang tiles. We have also demonstrated
utilization of these fields as enrichments in XFEM.
In order to avoid non-standard quadratures, XFEM
basis functions were projected onto a discretization
arising from assembly of the tile discretization used
for computing the fluctuation fields.

The proposed methodology was applied to a steady-
state heat conduction problem defined in an L-shaped
domain with microstructural geometry provided by
the tiling concept. Only 1.6 % of the original degrees
of freedom were sufficient to obtain 2 % relative error
compared to DNS.

On the other hand, the reduction in DOFs acceler-
ates only the solution of Eq. (16). For more significant
time savings, a low-rank additional approximation of
Kf , e.g. using the idea of hyper-reduction [12], has
to be introduced and is the focus of our current work.
We have also restricted ourself to the first-order de-
composition, Eq. (2); higher order expansion of the
macroscopic loading can be considered to further en-
rich the approximation space.
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