
doi:10.14311/APP.2020.26.0107
Acta Polytechnica CTU Proceedings 26:107–111, 2020 © Czech Technical University in Prague, 2020

available online at https://ojs.cvut.cz/ojs/index.php/app

MUPIF WORKFLOW EDITOR AND AUTOMATIC CODE
GENERATOR

Stanislav Šulc∗, Vít Šmilauer, Bořek Patzák

Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Thákurova 7,
166 29 Prague 6, Czech Republic

∗ corresponding author: stanislav.sulc@fsv.cvut.cz

Abstract. Integrating applications or codes into MuPIF API Model enables easy integration of such
APIs into any workflow representing complex multiphysical simulation. This concept of MuPIF also
enables automatic code generation of the computational code for given workflow structure. This article
describes a ’workflow generator’ tool for the code generation together with ’workflow editor’ graphical
interface for interactive definition of the workflow structure and the inner data dependencies. The
usage is explained on a thermo-mechanical simulation.

Keywords: MuPIF, workflow editor, code generator.

1. Introduction
Complex physical tasks often need integration of very
different models or solvers. Since there exist models
solving the particular tasks, it is a very effective ap-
proach to connect the existing software tools together
to solve the complex tasks. A MuPIF platform [1] is
a Python [2] tool for such interconnection of several
models together to compute coupled or linked mul-
tiphysical simulation. Note that in our terminology
a model can be some software, application or code.
Each model is covered in a Python API derived from
MuPIF class Model, which has the following functions:

__init__() # Creates an instance of the class
Model.

initialize() # Initializes the Model instance
for a specific usecase.

solveStep() # Solves a computational step with
defined length.

terminate() # Cleans all resources of the Model
instance.

set() # Sets inputs of the model, e.g. MuPIF
Field or Property.

get() # Returns outputs of the model, e.g.
MuPIF Field or Property.

getCriticalTimeStep() # Returns maximum time
step length

These seven functions suffice for full control of a basic
computation.

The communication between models is realized with
exchanging instances of MuPIF classes Field or Prop-
erty. These instances can be obtained from a model by
calling its get() method with appropriate parameters,
and can be sent to a model by calling its set() method.
Both Field and Property instances keep their values,
but they also have attributes describing their type,
units and some additional info for unique identifica-
tion. Then, a Property can be sent to a Model and
the Model decides what to do with it. This concept

creates environment for easy interconnection of even
completely different codes, which can also be based
on different programming languages. The value of
a Property is a tuple of any value types. A Field
has a tuple of nodal or cell values for each entity,
according to the field type, while each value can be a
tuple. A Field is always linked with a MuPIF Mesh,
which gives the Field space definition, interpolation
and portability to tasks with different discretization.
Several models together create a workflow, which

can be executed or added into another workflow, as it
can behave like a model from outer scope, see Fig. 1.
The MuPIF class Workflow is derived from class Model
and is extended with the following function:

solve() # Calls solveStep() until the target
time is reached.

which solves the whole simulation. A simplified
Python code of a simulation with two models can
look like this:

tm = thermal_model()
mm = mechanical_model()
tm.initialize(’input_t.in’, ...)
mm.initialize(’input_m.in’, ...)
while time<targetTime:

tm.solveStep(...)
tf = tm.get(...)
mm.set(tf)
mm.solveStep(...)
...

tm.terminate()
mm.terminate()

2. MuPIF workflow generator
The concept of MuPIF, especially the unified struc-
ture of the APIs allows us to automate generation of
the computational steering code when the simulation

107

https://doi.org/10.14311/APP.2020.26.0107
https://ojs.cvut.cz/ojs/index.php/app


S. Šulc, V. Šmilauer, B. Patzák Acta Polytechnica CTU Proceedings

Figure 1. Example of a workflow structure.

Figure 2. Workflow diagram of a thermo-mechanical simulation.

workflow structure is defined. Each API contains list
of inputs and outputs which can be interconnected
according to the data flow in the chain of models. This
list also contains detailed description of each input or
output.

The MuPIF workflow generator project [3] provides
Python code environment to define the hierarchical
structure of the simulation. It contains classes of
blocks, where each block represents an item in the
workflow diagram. There are blocks for following
entities: MuPIF Model, MuPIF Property, MuPIF
Physical quantity, time loop and the whole workflow.
There are also some other blocks and also a possibility
of implementing a new block by user.
Workflow and time loop blocks can contain a se-

quence of another blocks. All blocks can have input
and output data slots. In case of Model block they
represent the Model inputs and outputs. In case of a
Property or Field the block has one output slot repre-
senting its value. Two data slots (output and input)
can be connected, which represents the data exchange
between models or setting of the input parameters.
When all the blocks and the data dependencies

are defined, the code can be generated. The MuPIF
Workflow code can be generated in two ways. The first

option is that the workflow structure defines function
solveStep(). In this case we call it a class workflow.
The second option is that the workflow has a timeloop
in itself and the structure defines the function solve().
In this case we call it an execution workflow.
In case of a class workflow there is a possibility

of setting some inputs or outputs, just like a Model
instance has some. It is realized using external data
slots of the workflow. These slots are connected to
some input or output slots inside the workflow, which
transfers data from or to the outer scope, see this logic
in Fig. 1. This is further explained in Section 4. The
execution workflow cannot have such slots because
the generated code behaves like a script to be run,
not like a module to set some parameters and call its
specific functions as in case of class workflow.

3. MuPIF workflow editor
MuPIF workflow editor [4] is a graphical user interface
of the workflow generator for easy definition of the
simulation structure according to its MODA [5] rep-
resentation. Each item in the workflow is represented
as a block with list of input slots on the left and list
of output slots on the right. These slots can be in-
teractively linked to define the dependencies among

108



vol. 26/2020 MuPIF workflow editor and automatic code generator

particular models, see Fig. 4. The input slots can also
be linked to some constant input data represented
with blocks of MuPIF constant Property, Field or
Physical quantity. There is also a block to define a
time-loop, a block for including custom code or if-
else block. When all the necessary dependencies are
defined, the Python code of the simulation can be
generated and saved or executed instantly.

The workflow editor provides saving of the workflow
state into a JSON file to save the work and continue
later. At the present time, it takes a part in the EU
Horizon 2020 project and thus it contains a list of
all available involved models inside, but any model
based on MuPIF Model or Workflow can be loaded
into this tool from a Python module. It automatically
creates the structure and visual representation with
the available data slots according to the inputs and
outputs specification.

4. Example of use
The usage of the workflow editor and generator is de-
scribed on a simple nonstationary thermo-mechanical
simulation. This task is one of the MuPIF examples
and can also be found in the workfloweditor github
repository [4]. The geometry and boundary conditions
are depicted in Fig. 3.

Figure 3. Schema of a thermo-mechanical task.

The material parameters are: conductivity
1.0 W.m−1.K−1, capacity 1.0 J.Kg−1.K−1, density
1.0 Kg.m−2, Young’s modulus E=30×109 Pa, ν=0.25
and coefficient of thermal expansion 1.2×10−6 K−1.
The mechanical response is caused only by the ther-
mal expansion, there is no force load. The MODA
workflow representation of the task is depicted in
Fig. 2.

4.1. Execution workflow
We begin with the option of defining structure of the
whole simulation in one execution workflow. The data
flow from Fig. 1 is realized in the workflow editor as
shown in Fig. 4. The thermal solver solves a non-
stationary 2D thermal task on a rectangular domain.
The boundary conditions on all edges can be set to
the solver, see the thermal nonstat model inputs in
Fig. 4. The left and bottom edge temperature in-
puts are linked to the output of a block representing
MuPIF constant temperature Property of zero value.
The top edge temperature is linked analogically to
a block representing constant temperature of 10 °C.

Figure 4. Execution workflow of the thermo-
mechanical simulation.

The output temperature field slot of the thermal task
is linked to the input temperature field slot of the
mechanical task, which yields in the following code:

mm.set(tm.get(mupif.FID_Temperature,
ts.getTime()))

109



S. Šulc, V. Šmilauer, B. Patzák Acta Polytechnica CTU Proceedings

where tm is the thermal model instance, mm is the
mechanical model instance and ts is the computational
time step.

The geometry of both thermal and mechanical task
is defined via input file for each task.

The block BlockTimeLoop represents the simulation
time loop and contains four model blocks. The last two
blocks represent model named field export to VTK,
which is a simple tool for saving given MuPIF field into
a file. It must have been integrated into the MuPIF
class Model to enable such usage in the workflow
editor. The MuPIF temperature and displacement
fields are exported into files within each computa-
tional timestep. The first three blocks of the workflow
represent MuPIF time Physical Quantity and define
the run of the simulation time loop.

4.2. Class + Execution workflow
We continue with the second option, which begins
with definition of a class workflow with the thermal
and mechanical models, see Fig. 5.

Figure 5. Class workflow of the thermo-mechanical
simulation.

The data slots are connected analogically, but the
top edge temperature slot is linked to the external
input data slot and thus this data requirement will be
satisfied from outer scope. Note that this input of the
workflow is called ’external input data slot’ although
inside the workflow its value is represented with an

output data slot to be linked with another block’s
input data slot. In case of external outputs it works
analogically, see the two external output data slots,
creating the outputs of this workflow.
Now we generate the class code and save it into a

file. It contains a definition of a class derived from
class Workflow. Then we create another workflow and
insert a BlockTimeLoop into it, see Fig. 6.

Figure 6. Execution workflow of the thermo-
mechanical simulation with thermo-mechanical work-
flow used as a model.

This block contains the thermo-mechanical Work-
flow as a Model and illustrates the encapsulation of a
complex simulation into a Workflow which provides
easier usage from outer scope.

4.3. Task solution and results
Both approaches from Section 4.1 and Section 4.2
yield into an execution workflow for which we can
generate the Python code. It can be saved into a file
or executed instantly from the workflow editor. The
execution will produce the VTK [6] files, which can
be easily visualized, see Figs. 7 and 8.

110



vol. 26/2020 MuPIF workflow editor and automatic code generator

Figure 7. Resulting temperature at time=10 s.

Figure 8. Resulting displacement at time=10 s.

5. Conclusions
This article describes a graphical software tool for
user-friendly definition of a multiphysical simulation
structure and the following generating of a Python
code of the simulation. The usage of the workflow
editor tool was explained on a thermo-mechanical task
in two modes - The first one is the whole task defined
in one execution workflow. The second one is defining
a class workflow to be imported into an execution
workflow as a model. The example is available in the
workflow editor github repository.

In the future, a web-based version of the workflow
editor will be created to provide easier access to this
tool without any installation.

Acknowledgements
We gratefully acknowledge financial support from EU
Horizon 2020 Project, contract number: 721105. We
also gratefully acknowledge the financial support from
Czech Technical University in Prague, grant number
SGS19/032/OHK1/1T/11.

References
[1] MuPIF https://github.com/mupif/mupif, 2019.
[2] Python https://www.python.org/.
[3] MuPIF Workflow Generator project repository.
https://github.com/mupif/workflowgenerator, 2019.

[4] MuPIF Workflow Editor project repository.
https://github.com/mupif/workfloweditor, 2019.

[5] The European Materials Modelling Council - MODA,
homepage. https://emmc.info/moda/.

[6] VTK https://vtk.org/.

111


	Acta Polytechnica CTU Proceedings 26:107–111, 2020
	1 Introduction
	2 MuPIF workflow generator
	3 MuPIF workflow editor
	4 Example of use
	4.1 Execution workflow
	4.2 Class + Execution workflow
	4.3 Task solution and results

	5 Conclusions
	Acknowledgements
	References

