COMPARISON OF VIRTUAL FIELDS METHOD, PARALLEL NETWORK MATERIAL MODEL AND FINITE ELEMENT UPDATING FOR MATERIAL PARAMETER DETERMINATION
DOI:
https://doi.org/10.14311/APP.2017.7.0007Abstract
Extracting material parameters from test specimens is very intensive in terms of cost and time, especially for viscoelastic material models, where the parameters are dependent of time (frequency), temperature and environmental conditions. Therefore, three different methods for extracting these parameters were tested. Firstly, digital image correlation combined with virtual fields method, secondly, a parallel network material model and thirdly, finite element updating. These three methods are shown and the results are compared in terms of accuracy and experimental effort.Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).