VALIDATION AND IMPLEMENTATION OF FAILURE PARAMETERS IN INTEGRATED SIMULATIONS FOR SHORT FIBRE REINFORCED POLYPROPYLENE
DOI:
https://doi.org/10.14311/APP.2017.7.0022Abstract
Nowadays short fibre reinforced polymers are often used in load carrying structural parts. Compared to continuous fibre reinforced polymers they exhibit a more complex morphology. Hence the determination of the strength is a difficult but important task. Therefore this was the objective of this research. The strength of short fibre reinforced polymers was numerically determined for low-speed to high-speed strain rates for specimens with different fibre orientations. For the failure modelling the micromechanical approach “First pseudo grain failure” in Digimat was used. The parameters for the material and failure description were determined with the reverse engineering method. Integrated finite element simulationswere performed to validate the material and failure models by tensile and bending tests with different specimens. The comparison of the results of the experiments and simulations showed low deviation.
Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).