1D HERMITE ELEMENTS FOR C1-CONTINUOUS SOLUTIONS IN SECOND GRADIENT ELASTICITY
DOI:
https://doi.org/10.14311/APP.2017.7.0033Abstract
We present a modified strain gradient theory of elasticity for linear isotropic materials in order to account for the so-called size effect. Additional material length scale parameters are introduced and the problem of static beam bending is analyzed. A numerical solution is derived by means of a finite element approach. A global C1-continuous displacement field is applied in finite element solutions because the higher-order strain energy density additionally depends on second gradients of displacements. So-called Hermite finite elements are used that allow for merging gradients between elements. The element stiffness matrix as well as the global stiffness matrix of the problem is developed. Convergence, C1-continuity and the size effect in the numerical solution is shown. Experiments on bending stiffnesses of different sized micro beams made of the polymer SU-8 are performed by using an atomic force microscope and the results are compared to the numerical solution.Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).