MECHANICAL PROPERTIES OF Cr-DLC LAYERS PREPARED BY HYBRID LASER TECHNOLOGY
DOI:
https://doi.org/10.14311/APP.2017.8.0020Abstract
Diamond like carbon (DLC) layers have excellent biological properties for use in medicine for coating implants, but poor adhesion to biomedical alloys. The adhesion can be improved by doping the DLC layer by chromium, as described in this article. Chromium doped diamond like carbon layers (Cr‑DLC) were deposited by hybrid deposition system using KrF excimer laser and magnetron sputtering. Carbon and chromium contents were determined by wavelength dispersive X-ray spectroscopy. Mechanical properties were studied by nanoindentation. Hardness and reduced Young's modulus reached 31.2 GPa and 271.5 GPa, respectively. Films adhesion was determined by scratch test and reached 19 N for titanium substrates. Good adhesion to biomedical alloys and high DLC hardness will help to progress in the field of implantology.Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).