LATERAL COOLANT FLOW BETWEEN FUEL ASSEMBLIES IN MIXED CORES
DOI:
https://doi.org/10.14311/APP.2018.14.0001Keywords:
subchannel analysis, SUBCAL, mixed core, thermal-hydraulicsAbstract
This paper presents the results of an analysis of lateral coolant flow between adjacent fuel assemblies with non-identical spacing grids in a mixed core consisting of TVSA-T mod.1 and TVSA-T mod.2 fuel assemblies. The calculation was carried out using modified subchannel code SUBCAL which allows to calculate 3D thermo-hydraulic characteristics of the coolant flow in the full three fuel assemblies model. This full three fuel assemblies model was created in two variants. The first variant consisted of three hydraulically identical fuel assemblies TVSA-T mod.1, whereas the second variant consisted of two fuel assemblies TVSA-T mod.1 and one fuel assembly TVSA-T mod.2 which mainly differ in types, number and axial coordinate of spacing grids and also in diameter of guide tubes. The influence of mixed core to lateral coolant flow and hence coolant temperature was obtained by comparing these two variants. The power distribution was taken from presumed mixed core fuel reload calculated by macro-code ANDREA. Finally there were also provided a comparison of results achieved by subchannel analysis approach with calculation of similar problem using CFD code ANSYS CFX by TVEL, the fuel supplier.Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).