CHARACTERIZATION OF THE FRACTURE MECHANICAL BEHAVIOR OF C-SMC MATERIALS
DOI:
https://doi.org/10.14311/APP.2018.18.0001Keywords:
C-SMC, Carbon Fiber Composites, Fracture Mechanics, AnisotropyAbstract
The fracture mechanics of random discontinuous Carbon Fiber Sheet Molding Compound (C-SMC) materials compared to traditional carbon fiber composites are not well understood. An experimental study was carried out to characterize the fracture behavior of such C-SMC materials. Mode I tests, using double cantilever beam specimens, and mode II tests, adopting the four-point bend, end-notched flexure configuration, were performed. Results show high variations in the forcedeflection responses and scatter in the fracture toughness properties GIc and GIIc, due to the complex mesostructure defined by random oriented carbon fiber chips. To investigate the influence of the mesostructure, tensile tests with varying specimen width and thickness were assessed by stochastic measures to find the representative specimen size.Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).