LOCAL MECHANICAL PROPERTIES OF ATMOSPHERIC SPRAYED MOLYBDENUM COATINGS DEPOSITED WITH CASCADED PLASMA TORCH
DOI:
https://doi.org/10.14311/APP.2020.27.0032Keywords:
Atmospheric plasma spraying, cascaded plasma torch, mechanical and tribological properties, molybdenum coatingsAbstract
Increasing interest for industrial use of thermally sprayed coatings leads to development in most thermal spraying technologies, including atmospheric plasma spraying (APS). The latest cascaded torch SinplexPro from Oerlikon Metco incorporates the efficiency advantages of cascaded arc technology into a single-cathode spray gun. It leads to more stable plasma arc across a wide range of gas flows, mixtures and pressures and also highly increases powder throughput. Thermal sprayed molybdenum coatings are widely used for improving wear resistance and sliding properties in many mechanical applications. Results of pure molybdenum coatings sprayed with cascaded plasma torch are not yet fully investigated. In this paper, mechanical properties of atmospheric plasma sprayed molybdenum coatings on steel (S235) substrate are evaluated. Optimization of spraying parameters for spherical Mo powder sprayed by cascaded plasma torch SinplexPro is carried out and the influence on final microstructure, mechanical and tribological properties of molybdenum coatings is analysed.Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).