CHARACTERIZATION OF TITANIUM LASER WELDS
DOI:
https://doi.org/10.14311/APP.2020.27.0145Keywords:
Elasticity, laser welding, nanohardness, surface profile, titaniumAbstract
Butt welding of commercially pure titanium Grade 1 and Ti6Al4V alloy sheets using a pulsed Nd:YAG laser KLS 246 - 102 LASAG were carried out to determine optimal values of pulse energy and pulse length to create completely penetrated weld. Surface peak power density of about 3.105 W.cm−2 was found as an optimal value. Weld dimensions, both face width and penetration depth, are found to be proportional to increasing energy and decreasing pulse length. Gentle sagging and root penetration were revealed by means of contact surface profilometry. The nanohardness tests on transverse cross-sections detected approximately 50% higher hardness in the fusion zone than in the base material.Downloads
Published
Issue
Section
License
Copyright notice
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal the right of the first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., to post it to an institutional repository or to publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of the published work (See The Effect of Open Access).