
ORIGINAL RESEARCH

5

REAL-TIME VISUALIZATION OF MULTICHANNEL ECG SIGNALS

USING THE PARALLEL CPU THREADS

Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic

Abstract
In this paper the concept of real-time visualization of multichannel ECG signals is introduced. The visualization of
more than one hundred ECG signals per screen is achieved through the parallel execution of two CPU threads. The
main thread of the application handles the GUI activity and the visualization of processed ECG signals, the worker
thread is responsible for handling the data acquisition, the dataflow formatting and computation of ECG leads and
processes the data for ECG signal visualization. For proper reconstruction of the signal shape in real-time a peak
detection algorithm is used. The application software is written in a cross-platform application and UI framework
named Qt. From the parallel execution point of view the application software uses task-parallelism. For the inter-
thread communication the Qt event system together with queued signals and slots mechanisms is used.

Keywords
multichannel ECG, real-time visualization, parallel CPU threads, real-time signal processing, body surface potential
mapping

Body surface potential (BSP) mapping is a non-

invasive electrocardiographic (ECG) method enabling
more precise diagnostics of cardiac diseases than the
commonly used 12-lead ECG. It is widely accepted
that 12-lead ECG may not be optimal for diagnostic
assessment of certain cardiac diseases like acute
cardiac ischemia or myocardial infarction since the
coverage of the standard precordial leads over the
thorax is limited. BSP, on the other side, enables
detailed registration of surface cardiac potentials using
tens to hundreds of sensing electrodes and consequent
ECG signal analysis offers much more information on
the physiological state of the heart [1]. Moreover,
many studies proved that BSP maps together with
information on torso geometry obtained from imaging
techniques such as MRI or CT can be used for more
advanced diagnostic methods based on inverse soluti-
ons and enable non-invasive model based assessment
of abnormal electrical sources in the heart [2].

However, the processing of a large number of
measured ECG signals imposes increased performance
requirements on the computing system. The growing
number of processed signals not only increases the

computing demands on the basic ECG signal
processing chain (see Fig. 1), but also complicates the
possibility to implement advanced methods for ECG
signal processing in real-time. The mentioned obstacles
could be overcome by the use of parallel processor
systems and parallel programming models. If it is
possible and suitable, the traditional single threaded
application can be parallelized in order to exploit the
processors capabilities of current heterogeneous
CPU-GPU based systems [3].

Fig. 1: Block diagram showing basic program modules
of the BSP mapping system.

In this paper possible concept of the real-time
multichannel ECG signal processing and visualization

ORIGINAL RESEARCH

6

together with the application software supporting
parallel execution of two CPU threads is introduced.

Real-time visualization of ECG signals

The visualization of ECG signals plays important

role mainly during the heart rhythm monitoring of
patients with critical diseases. Such monitoring
requires real-time ECG signal processing. The term
“real-time processing” can be used either to identify
the processing of each individual signal sample before
the next signal sample will arrive, or to identify the
processing of more samples from one signal episode,
like a heart beat, before the samples from the next
signal episode are at disposal [4]. If we consider
sampling frequencies used in high-resolution
electrocardiography and the resolution of common PC
monitors, the visualization of several heart beats on the
screen requires a compression of acquired samples.
Thus the second above mentioned real-time processing
approach should be used. To ensure proper
reconstruction of the signal shape in real-time without
repeated plotting of redundant points or discontinuities
in signal tracings an appropriate method has to be
chosen. The best results could be achieved by the use
of sinx/x interpolation [5], however this method is
applicable only in situations where the time is not
critical.

Our application utilizes the method that is similar to
the method for peak detection used in some digital
oscilloscopes (Tektronics or LeCroy, [6]). The method
determines the maximum and minimum value among
the samples from one acquisition interval t and then
displays the values and all the values between them to
one vertical line that has the width of one pixel on the
display (see Fig. 2). In this way the compression of the
time axis is achieved without missing any extremes
that might occur during the acquisition interval [7].

Fig. 2 Peak detection and time compression during
signal visualization.

From Fig. 2 another problem of the visualization is
apparent. Rapid changes of signal amplitudes can lead
to broken tracing lines on the screen as shown in Fig. 2
- part 3. This occurs usually on the onset and offset of
the R wave of the ECG curve. To solve this problem,
connections between vertical lines of previous and
following processed intervals of the visualized signal
need to be added as depicted in the part 4 of the same
figure.

The value of t has to be selected with respect to the
character of the displayed signal. The shortest
component of the ECG signal is represented by the Q
wave with the duration of 30 ms (see Tab. 1). In order
to ensure reliable detection of all ECG waves and to
eliminate their merging, the value of t should not be
greater than 30 ms.

Tab. 1: Durations of ECG waves.

P wave Po - Pe 60 - 110

PQ segment Pe - Qo 60 - 90
PQ interval Po - Qo 120 - 200

Q wave Qo - Ro < 30
QR interval Qo - R < 30 - 50

QRS complex Qo - Se < 100
T wave To - Te < 160

ST segment Se - To < 120
QT interval Qo - Te 200 - 400

RR interval R - R
830 (at

fs = 72/min)

With respect to the above mentioned method that

requires at least two samples (minimal and maximal)
for signal shape reconstruction, another factor
influencing t is the sampling frequency used during
the ECG monitoring. Our multichannel mapping
system ProCardio8 enables to set sampling frequency
from 125 to 2000 Hz. It implies that the value of t
needed to acquire two samples lies in the range
between 16 and1 ms. For our application we have
decided to define common acquisition interval for all
possible sampling frequencies, thus we have selected

t = 16 ms. Value of t defines also the time base rate
for visualization of ECG signals during the monitoring.

When very large number of signals is recorded
simultaneously, the multichannel ECG monitoring
should enable also visualization of lower number of
ECG signals on the screen suitable for human
perception. For this reason our application uses the
concept of virtual screens (see Fig. 3). Each individual
virtual screen can visualize only an n-tuple of
measured signals and during ECG monitoring it is
possible to switch between individual virtual screens.

ORIGINAL RESEARCH

7

Fig. 3: Concept of virtual screens.

To further speed up the signal displaying, the time

consuming complete erasing of the virtual screen is
avoided during the signal monitoring, if possible. Thus
the application draws only additional vertical lines of
pixels corresponding to the actual acquisition interval

t, without redrawing the whole virtual screen.

Parallel processing

The current trend in CPU design moves towards

several cores. A typical single-threaded application can
exploit only one core at a time. However, a program
with multiple threads can be assigned to multiple cores,
making threads running in a concurrent way. As a
result, the distribution of the work to more than one
thread can make the program running much faster on
multicore CPUs [3, 8].

The basic idea of writing a parallel program is the
partitioning of the work among several cores. There are
two widely used approaches: task-parallelism and data-
parallelism. In task-parallelism, various tasks carried
out to solve the problem are partitioned among the
cores. In data-parallelism, data used in solving the
problem are partitioned among the cores and each core
carries out more or less similar operations on its part of
the data [3, 8].

When the cores can work independently, writing
a parallel program is much the same as writing a serial
program. Things get more complex when the cores
need to coordinate their work. The coordination usually
involves communication among the cores, load
balancing, and synchronization of the cores.

Application software

Since the real-time processing and visualization of

multichannel ECG signals is computationally highly
demanding, we proposed an application taking the
advantage of multicore CPUs. The application software
is written in Qt – a cross-platform application and user
interface framework for developers using C++.

The application software uses the task-parallelism. It
consists of the main thread and the worker thread (see
Fig. 4). The main thread handles the activity of the
graphical user interface (GUI) and thus also the
visualization of processed ECG signals. The worker
thread is used to offload the data processing work from

the main thread. It is responsible for managing data
acquisition, dataflow formatting, leads computation
and the processing of data for ECG visualization.

For the inter-thread communication, the Qt’s event
system together with queued signals and slots
mechanisms is used. The signal is a method that is
emitted rather than executed when called. The slot is
a member function that is called as a result of signal
emission [9].

Every thread has its own event loop. It waits in the
event loop for a specific event to occur. To place an
invocation in an event loop, a queued signal-slot
connection is made. Queued connection type
determines that the slot is executed in the receiver’s
thread when the control returns to the event loop of the
receiver’s thread. In other words, to call a slot in
another thread, that call is placed in the receiver’s
thread event loop. This lets the receiver thread to finish
its current task before the slot starts running, while the
sender thread continues running in parallel. Such
approach enables to obtain the worker thread’s results
without blocking the main thread run.

Fig. 4: Parallel threads and program modules of the
proposed application.

For the sake of simplicity, we shall consider only two

programming modules that will be distributed among
the threads: the main GUI module and the worker
module (see Fig. 4). The main GUI module
incorporates all GUI modules including the virtual
screen GUI. The worker module integrates all
additional modules used in the application.

When our application supported only one execution
thread, the main GUI module and the worker module
had to be processed within the timeout interval of
16 ms. (A timer with a timeout interval of 16 ms
periodically forced the thread event loop to acquire and
process new data). When we gradually increased the
number of measured and visualized signals, we reached

ORIGINAL RESEARCH

8

a point when the sum of the time needed to update the
main GUI module and the execution time of the worker
module exceeded the set timeout interval. Such
behaviour naturally led to the overflow of the device
circular buffer with acquired data samples.

After the implementation of two threads, the worker
thread offloaded the processing work from the main

thread and contributed to keeping the main thread GUI
responsive. The execution of the worker module has
become independent from the main GUI module
updates, what helped to stabilize the periodicity of the
data acquisition and the data processing. In addition, an
idle time interval has also arisen in the worker thread

Fig. 5: The main window of the designed application software.

event loop. This idle time interval can be used for
implementation of additional program modules into the
worker module. In an ideal case both, the runtime of
the main GUI module and also the runtime of the
worker module should not exceed the timer timeout
interval. Anyway, if the number of visualized ECG
signals per virtual screen increases, the time needed to
manage and update corresponding pixels in signal
windows on the screen will also increase and can
exceed the timer timeout interval. The most critical part
represents the switching between virtual screens, when
the erasing of the whole virtual screen is necessary.
However, thanks to the queued signal/slot connections
our application enables continuous execution of the
worker module even if there is a delay in the main GUI
module.
The extra samples prepared for ECG visualization in
the worker thread are simply stored in the main thread
event queue for later dispatching. Queued ECG
samples are consequently visualized within a few
tenths of milliseconds, without noticeable perception of
the user.

Regarding the maximal data throughput of the
ProCardio8 mapping system, (up to 144 measured
channels, 2000 Hz sampling frequency and 22-bit
sample resolution), it is possible to reliably display up
to one hundred ECG signals per one virtual screen (see
Fig. 5).

Parallel hardware became ubiquitous in today’s

computers. It’s difficult to find a laptop, desktop, or
server that doesn’t use a multicore processor. In
situation of stagnating single processor capabilities and
increasing parallelism, a growing audience of scientists
and engineers is concerned with performance and
scalability.

The proposed application software takes the
advantage of multiprocessor machines. Currently only
two execution threads are implemented. However, the
presented approach enables to add additional parallel

ORIGINAL RESEARCH

9

threads, if necessary. Likewise, we can use the task-
parallelism not only to distribute independent program
modules between different threads, but also to support
parallel execution of tasks inside individual program
modules. Because the processing of multichannel ECG
signals shows considerable data-parallelism, besides
the task-parallelism, also data-parallel algorithms can
be utilized in the application, e.g. for parallel
multichannel ECG signal filtration [10], or for the BSP
map computation and visualization [11]. Thanks to the
current heterogeneous CPU-GPU based system and
more friendly software support for the general purpose
computations on GPUs, the data parallel task can be
now effectively processed directly on the GPU. It is
possible to exploit the different capabilities of mutli-
core CPUs and many-cores GPUs according to their
suitability and computational demands. The real-time
processing and visualization of multichannel ECG
offers a great space for further investigation of its
possible improvement by the use of the parallel
programming approach.

The work was supported by research grant 2/0131/13

from the VEGA Grant Agency and by grant APVV-
0513-10 from the Slovak Research and Development
Agency.

[1] Tyšler, M. et all. Non-invasive Assessment of Local
Myocardium Repolarization Changes using High Resolution
Surface ECG Mapping. Physiological Research, 2007, vol. 56,
suppl 1, S133-S141.

[2] Hanninen, H. et all. ST-T integral and T-wave amplitude in
detection of exercise-induced myocardial ischemia evaluated
with body surface potential mapping. J. of Electrocardiology,
2003, 36, 89.

[3] Pacheco, S. P. An Introduction to Parallel Programming.
Morgan Kaufmann Publishers, Burlington, 2011. ISBN 978-0-
12-374260-5.

[4] Rangayyan, R. M. Biomedical signal analysis: a case study
aproach. Wiley-IEEE Press, New York, 2002. ISBN 0-471-
20811-6.

[5] Havlík, L. Oscilloscopes and their using. Sdelovaci technika,
Praha, 2002. ISBN 80-901936-8-4.

[6] Tektronix Acquisition Modes., 2004, [online], [2014/05/09],
http://anlage.umd.edu/.

[7] Karas, S., Tyšler, M. Matlab Software for High-Resolution
Multichannel ECG Measurement. Instrumentation for the ICT
Era. Proceedings of the 17th Symposium IMEKO TC 4, Košice,
Slovak Republic, 8.-10. 9. 2010, p. 586–590.

[8] Hager, G., Wellein, G. Introduction to High Performance
Computing for Scientistst and Engineers. CRC Press, Boca
Raton, 2011. ISBN 978-1-4398-1192-4.

[9] Thelin, J. Foundations of Qt Development. Apress, New York,
2007. ISBN 978-1-159059-831-3.

[10] Real-time processing of multichannel
ECG signals using graphic processing units. Clinician and
Technology, 2012, vol. 42, no. 2, p. 27–30.

[11] Muzik, J. et all. ProCardio8 – the 8th generation of the high
resolution ECG mapping system. XIX IMEKO World
Congress, Lisbon, Portugal, 6.-11.9.2009, p. 1689-1694.

Department of Biomeasurements
Institute of Measurement Science

Slovak Academy of Sciences
Dúbravská cesta 9, 841 04 Bratislava

E-mail: peter.kalavsky@savba.sk

Phone: +421 259 104 551

