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Abstract  
Unobtrusive sensing is a growing aspect in the field of biomedical engineering. While many modalities exist, a large 

fraction of methods ultimately relies on the analysis of thoracic movement. To quantify cardiorespiratory induced 

thorax movement with spatial resolution, an approach using high-performance motion capture, electrocardiography 

and deconvolution is presented. In three healthy adults, motion amplitudes are estimated that correspond to values 

reported in the literature. Moreover, two-dimensional mappings are created that exhibit physiological meaningful 

relationships. Finally, the analysis of waveform data obtained via deconvolution shows plausible pulse transit behavior. 
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Introduction 

Ambient and unobtrusive cardiorespiratory sensing 

techniques form an increasing sub-field within 

biomedical engineering [1]. Sensor principles range 

from camera-based methods [2] over ultrasound [3], 

radar [4] and laser [5] to force sensors [2] and high-

frequency oscillator circuits [6]. For a comprehensive 

overview, the interested reader is referred to [1]. While 

the sensors span a wide range of devices and physical 

principles, many methods that allow unobtrusive 

monitoring of heart and lung are ultimately based on 

the analysis of thoracic movement. 

Most of the time, unobtrusive sensing modalities are 

evaluated in terms of their ability to detect respiratory 

rate, respiratory patterns, heart rate or beat-to-beat 

intervals. Thus, they are commonly compared to 

a medical gold standard, such as the electrocardiogram 

(ECG) or an air flow sensor. However, spatially 

resolved quantification of the actual thoracic motion is 

seldom performed. For this, specialized measurement 

equipment is necessary. Moreover, if cardiac induced 

motion is to be quantified, sub-millimeter accuracy is 

required. At the same time, spatially resolved infor-

mation could help to optimize regions of interest for 

existing and future sensing modalities. Thus, the aim of 

this paper is to develop a method for the spatially 

resolved analysis and mapping of cardiorespiratory 

induced thorax movement. For this, volunteers sitting 

in an armchair are monitored with a high-performance 

motion capture (MoCap) system and an ECG. To 

extract and quantify the spatial impulse responses of 

cardiac and respiratory activity, deconvolution [7] is 

used. This paper is a reprint of the work presented at 

the conference POSTER 2017. 

Materials and Methods 

Fig. 1: Schematic overview of the system setup. 

The overall setup of the system is demonstrated in 

Fig. 1. Only three of the seven cameras used for 
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MoCap are visualized, which are placed around the 

subject in a semicircle. 

Hardware 

For motion capture, the “Oqus” system from 

Qualisys AB, Göteborg, Sweden configured with seven 

“Opus 500+” infrared (IR) tracking cameras and ten 

passive reflective markers was used. Each camera has 

a resolution of 4 megapixels at fs,max = 180 Hz and is 

equipped with a C-mount lens with a focal length of 

13 mm. The aperture was set to f/4.0 and manual 

focusing was performed. Illumination was provided by 

rings of IR LEDs integrated into each camera unit. 

Marker positions were tracked at fs,M = 100 Hz. For 

ECG acquisition, the “MP30” patient monitor, 

manufactured by Philips, Amsterdam, The Netherlands 

was used as analog front end. Digitalization was 

performed at fs,A = 800 Hz with a DAQ system which 

was synchronized with the cameras. 

Trial Setup 

Fig. 2: A) Schematic of marker positions, B) Photo-

graphy of actual marker positions, C) Coordinate 

system. 

Table 1: Position of reflective markers for motion 

capture. 

# Position x Position z 

1 Central axis Center of forehead 

2 Right nipple 1 cm above right nipple 

3 Central axis Sternum, superior part 

4 Left nipple 1 cm above left nipple 

5 Central axis Sternum, inferior part 

6 Right nipple 1 cm below costal margin 

7 Central axis As 6 and 8 

8 Left nipple 1 cm below costal margin 

9 Centered btw. 6&7 Navel 

10 Centered btw. 7&8 Navel 

Three healthy volunteers participated in the trial 

which was conducted as self-experimentation. A sche-

matic of the marker positions is given in Fig. 2, which 

are further described in Table 1. Fig. 2 B) shows 

a photograph of the marker positions for one partici-

pant and in Fig. 2 C), the coordinate system is given, x 

being the right/left axis. Since the subjects are sitting in 

a chair with approximately 20° recline, y and z only 

approximate the dorsoventral and the craniocaudal axis 

respectively. 

Data Analysis 

The proposed model is shown in Fig. 3. The motion 

of each marker i is described as yi and is influenced by 

a cardiac and a respiratory component. For each 

marker, these components are generated by filtering 

a virtual train of impulses originating from the heart 

and the lung with marker-specific transfer functions 

acard,i and aresp,i, respectively. If yi, scard and sresp are 

known, the filter coefficients acard,i and aresp,i can be 

estimated via deconvolution [7]. 

Fig. 3: Proposed source-filter structure of thoracic 

movement influenced by a superposition of cardiac and 

respiratory component. For each marker i and axis 

x, y, z, individual filters a exist. 

In the proposed approach deconvolution is performed 

separately for the cardiac and the respiratory compo-

nent. For either component, the convolution is de-

scribed by 
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where n is the discrete time, Q the filter order and z is 

additive noised. The subscripts ‘card’ and ‘resp’ are 

omitted for reasons of brevity. In the Fourier domain, 

this can be expressed via 
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Here xi[k], si[k], and zi[k] are the Fourier transforms of 

their time-domain equivalents. The discrete frequency 

is marked by k and N is the number of samples. The 

filter coefficients are not transformed but the delay is 

expressed explicitly by the term e-j2πkτ/N. This can be 

expressed in matrix notation as 

       ,kzkskky iii
 ea (3) 
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with the Fourier-domain delay-vector 

    ,,...,,1 /2/12 TNkQjNkj eek  e (4) 

and the vector of filter coefficients 
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Let [∙]T be the transpose, [∙]H the Hermitian transpose 

and [∙]* the conjugation operator. If the source signal is 

known, the optimal filter coefficients in terms of 

a minimal quadratic error can be determined with 
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with the matrix 
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and the vector 
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For a more detailed derivation and an applications to 

blind deconvolution, the interested reader is referred to 

[8]. 

Note that the calculations are carried out separately 

for all i markers, for the respiratory component and for 

the cardiac component. Moreover, a separate filter is 

estimated for the each dimension x, y, and z. To obtain 

the cardiac related motion yi,card, the marker position is 

filtered with a second-order Butterworth bandpass with 

0.8 to 30 Hz passband. The respiratory component yi,resp 

is obtained via filtering with a passband of 0.01 to 

0.3 Hz. The cardiac impulse signal scard is obtained 

from R-peaks of the ECG, while sresp is obtained via 

peak-detection on the geometric mean of y and z 

component of the central marker #5. To quantify the 

cardiac and respiratory induced motion, the range of 

ai,est, i.e. the maximum minus the minimum of the 

respective impulse response, is calculated. For 

visualization, the range is color-coded and interpolated, 

the mapping is shown in Fig. 4. 

Fig. 4:  Mapping of the color-coded ranges, see 

also Fig. 6. Note that the mapping is slightly distorted 

as the subjects were monitored in a sitting position 

with a recline of approximately 20°. 

Results and Discussion  

In Fig. 6, the color-coded ranges are visualized. 

Several observations can be made. First, neither cardiac 

nor respiratory activity create a significant x (i.e. left-

right) motion in any subject, which is to be expected. 

Next, the strongest respiratory motion in the y 

(dorsoventral) direction occurs in the belly area, 

whereas the strongest z (craniocaudal) component is 

measured in the upper part of the thorax. This is 

consistent with normal physiological breathing, where 

the ribcage is lifted and the downward motion of the 

diaphragm displaces organs which extend the belly. In 

terms of amplitude, the maximum respiratory induced 

motion is in the range of 5 to 7 mm, while the 

maximum cardiac induced motion ranges from 0.25 to 

0.3 mm, which is consistent with values reported in the 

literature [9, 10]. In conclusion, more than an order of 

magnitude lies between the cardiac and the respiratory 

effect. Similar to the observations made with respect to 

respiration, the strongest z component can be measured 

in the upper part of the thorax close to the heart, 

whereas the strongest y movement of the thorax due to 

cardiac activity occurs in the belly region. At the same 

time, a relatively strong y-motion of approximately 

0.25 mm can be observed on the foreheads of all 

subjects. Compared to the thoracic region, the 

influence of respiratory induced motion on the 

forehead is relatively low. 

In Fig. 5, the impulse response of the z-component of 

markers 4 and 9 are shown for subject 1. 

Fig. 5: Impulse response of the z-component of cardiac 

induced thoracic movement for subject 1, markers 4 

and 9. The each maximum value is marked with an x.  

On can see that the largest peak occurs at 110 ms in 

the time course of marker 4, whereas for marker 9, the 

largest peak is found at 310 ms. Thus, the marker 

closest to the heart exhibits a delay of 110 ms with 

respect to the R-peak, i.e. the electrical activity, 

whereas the pulse transit time between both markers is 

200 ms. 
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Fig. 6:  Mapping of respiratory (left) and cardiac (right) induced movement, see also Fig. 5. For each subject, an 

individual color code was used for respiratory and cardiac movement, which was constant for x, y, and z 

component. Values are given in mm. 
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Conclusions and Outlook  

In this paper, the use of motion capture and 

deconvolution to quantify cardiorespiratory thorax 

movement was demonstrated. Using a high-perfor-

mance MoCap system and an ECG, movement 

amplitudes from three healthy subjects were obtained 

that are consistent with values reported in the literature. 

From these values, spatially resolved maps were 

created that exhibit physiological plausible distri-

butions. Moreover, the phenomenon of pulse transit 

could be observed and quantified. In the future, a larger 

study with a statistical analysis needs to be performed. 

It is hoped that our findings can be used in the future 

for the optimization of regions of interest for 

unobtrusive sensing, for example by focusing on the 

head or belly region. 
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