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SIMULATION OF ARC MOTION IN ALTERNATING MAGNETIC FIELD
USING DIMENSIONLESS MOMENTUM EQUATION
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Abstract. A new heat-treatment system has been developed using an arc driven by an alternating
magnetic field. The arc motion was theoretically investigated by the method of non-dimensional
analysis. After the definition of the pertinent characteristic length and time, the momentum equation
was converted into the dimensionless form. This approach gave us not only a short cut to simulate the
arc motion but also clear understanding on the nature of the magnetically driven arc.
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1. Introduction
When an alternating magnetic field is applied per-
pendicularly to an arc, the arc swings back and forth
like a pendulum [1–3]. The authors refer to such an
arc as a magnetically driven arc. The magnitude of
the arc power and the amplitude of its oscillatory
motion can be adjusted by changing the arc current
and the applied field strength, respectively. The heat
flux distribution can be controlled by changing the
wave form of the alternating field. As shown in Figure
1, the distribution of the heat flow is rather flat for
the sinusoidal wave form. While for the rectangular
wave form, heat flows are concentrated at the both
ends of the oscillation amplitude.

Using the magnetically driven arc, a new heat treat-
ment system has been developed. As shown in Figure
2, it is composed of several sections. A transferred dc
arc burns between a plasma torch and a work piece
which serves as an anode. Various types of alternating
magnetic field could be produced by an ac current
supply. The work piece travells at any arbitrary veloc-
ity in horizontal direction by a driving mechanism of
an anode platform. After the heating, it is quenched
by cooling water sprayed from its back side. The
sequences of the treatment are proceeded automati-
cally by a programmable logic controller. To check
the performance of the treatment, Vickers hardness
tests were carried out. The test for the carbon steel
after the heat treatment revealed that the hardness in-
creased more than three times compared to the initial
one [4].
To expand the application of this heat treatment,

it is important to know the exact behaviours of the
arc under various operating conditions. Few investiga-
tions were carried out for various alternating magnetic
fields [5, 6]. As the arc motion depends on many op-
erating parameters, it is not easy to understand the
nature of the arc. The aim of the present work is to
open a simple way to simulate the arc motion using a
dimensionless analysis. In the following section, the
governing equation will be prepared together with nec-

Figure 1. Control of the heat flow distribution by
changing the wave form of the magnetic field.

Figure 2. Arrangement of the developed heat treatment
system.

essary initial conditions. In Section 3, a new approach
using non-dimensional analysis will be discussed to
solve the governing equation. Numerical calculations
will be carried out in Sections 4 and 5. To confirm
the theoretical predictions, experimental observation
will be reported also in Section 5. Summary talk will
be presented in Section 6.
Main parameters and their symbols used in this

article are listed in Table 1 .
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symbol nomenclature
B magnetic flux density (vector)
B absolute value of B
B* critical value of magnetic field
I arc current
L z-position of the anode
Q mass flow rate of plasma gas
R dimensionless position, R = r/ζ
T dimensionless time, T = t/τ

X dimensionless x-position, X = x/ζ

Y dimensionless y-position, Y = y/ζ

Z dimensionless z-position, Z = z/ζ

b unit vector, b = B/B
j current density of arc (vector)
r position of plasma gas (vector)
t time
v velocity of plasma gas (vector)
vo initial velocity of plasma gas
x x-component of r
y y-component of r
z z-component of r
α proportional constant
λ operating variable, λ = IB/Q

θ intersection angle of B to z-axis
ρ density of plasma gas
ζ characteristic length, ζ = −vo/λ

τ characteristic time, τ = 1/λ

Table 1. List of main parameters used in the modelling

2. Momentum equation for the plasma
gas

The arrangement of the theoretical model is illustrated
in Figure 3. A transferred arc is generated between the
anode and the cathode in the torch. Plasma forming
gas is ionized in the torch and ejected from the exit of
the torch nozzle at the velocity vo. It is assumed that
the magnetic field B is uniform in space and it has
no y-component (By = 0). In an alternating magnetic
field, the intersection angle between the field vector
and z-axis changes from θ for a certain half period to
(θ + π) for another half period, since B reverses its
direction at the time interval of the half period. The
frequency (f ) of the alternating field is also assumed
to be so small that the ionized gas may travel as if
the field was in a steady state during the flight from

Figure 3. Schematic illustration of the the model.

the torch to the anode. The flight time of the plasma
gas is estimated to be L/vo in order of magnitude.
Typically, L/vo ∼ 10−3 s as the distance (L) and the
velocity (vo) are 10−1 m and 102 m s−1 respectively.
Therefore, if f is restricted in the range of 100Hz or
less, the assumption of the steady field can be satisfied
[5].
The key idea in the present modelling is that the

trajectory of the plasma gas motion represents the
arc profile, since the arc current has to pass along
the stream line of the plasma gas which is electrically
conductive. The momentum equation of the plasma
gas is expressed as

ρ
dv
dt = j×B. (1)

Using a unit vector b, the magnetic field is written as

B = Bb. (2)

When intersection angle equals θ,

b = (bx, by, bz) = (sin θ, 0, cos θ) . (3)

Based on the fundamental idea used in the modelling,
j is expressed as

j = −αv (4)
where α is a positive proportional constant. A minus
sign results from the anti-parallel relation between the
plasma gas motion and the arc current. Considering
the continuity of the gas flow and that of the arc
current, the following relation is obtained

I = α
Q

ρ
. (5)

Then the equation (1) is rewritten as

dv
dt = −λ (v× b) , (6)

where
λ = IB

Q
. (7)

Since
v = dr

dt , (8)
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the momentum equation is expressed as

d2r
dt2 = −λ

(
dr
dt × b

)
. (9)

The plasma gas starts from the torch exit at t = 0,
with initial velocity vo directed downward along z-
axis. The trajectory of the plasma gas is obtained by
solving the momentum equation using a Lagrangian
method. Initial conditions at t = 0 are given as

(r)t=0 = (x, y, z)t=0 = (0, 0, 0) (10)(
dr
dt

)
t=0

=
(

dx
dt ,

dy
dt ,

dz
dt

)
t=0

= (0, 0, vo) , (11)

and (
d2x

dt2 ,
d2y

dt2 ,
d2z

dt2

)
t=0

= (0,−λvosinθ, 0) . (12)

When the applied magnetic field is alternating, λ
in equation (9) and initial condition (12) varies its
magnitude depending on the field strength B. And
the vector b changes its direction from θ for a half
period to (θ + π) for another half period. Therefore,
for another half period, equation (3) and equation
(12) should be replaced by the following equations

b = (sin(θ + π), 0, cos(θ + π)) = (− sin θ, 0,− cos θ)
(13)

and (
d2x

dt2 ,
d2y

dt2 ,
d2z

dt2

)
t=0

= (0, λvosinθ, 0) . (14)

3. Non-dimensional analysis
3.1. Definition of characteristic length and

time
In an alternating magnetic field, the arc changes its
profile with B. To know the variation of arc, it is
required to solve the differential equation (9) many
times for various λ. To avoid such troublesome, non-
dimensional analysis was proposed in this work. Here,
dimensionless time (T) and dimensionless position
(R) were considered using characteristic time (τ) and
length (ζ). The time was normalized by the character-
istic time and converted into the dimensionless time
as

T = t/τ. (15)
The position was normalized by the characteristic
length and converted into the dimension position as

R = r/ζ (16)

or
X = x/ζ, Y = y/ζ, Z = z/ζ. (17)

Where the characteristic time and length were defined
respectively as

τ = 1/λ = Q/ (IB) (18)

and
ζ = −voλ = − (voQ) / (IB) . (19)

3.2. Dimensionless momentum equation
Using the dimensionless time and the dimensionless
position, the momentum equation (9) was transformed
into the following dimensionless equation as

d2R
dT 2 =

(
dR
dT × b

)
. (20)

And the initial conditions presented in equations (10-
12) were transformed into

(R)T =0 = (X,Y, Z)T =0 = (0, 0, 0) , (21)(
dR
dT

)
T =0

=
(

dX
dT ,

dY
dT ,

dZ
dT

)
T =0

= (0, 0,−1)

(22)
and (

d2X

dT 2 ,
d2Y

dT 2 ,
d2Z

dT 2

)
T =0

= (0, sin θ, 0) . (23)

To calculate the trajectory of the plasma gas mo-
tion, the dimensionless momentum equation (20) was
decomposed into three scalar equations. For the X-
component,

d2X

dT 2 = −dY
dT cos θ. (24)

For the Y-component and the Z-component were re-
spectively rewritten as

d2Y

dT 2 = −dZ
dT sin θ + dX

dT cos θ, (25)

and
d2Z

dT 2 = −dY
dT sin θ. (26)

While scalar product of the vector b to the vector
equation (20) yielded the following relation

d
dT

(
dX
dT sin θ + dZ

dT cos θ
)

= 0. (27)

Considering the initial condition at T = 0 , equation
(27) lead to

dX
dT sin θ + dZ

dT cos θ = − cos θ. (28)

Taking the above relation into account, the simul-
taneous equations (24-26) were rearranged into the
following three third-order linear ordinary differential
equations

d3X

dT 3 + dX
dT + sin θ cos θ = 0, (29)

d3Y

dT 3 + dY
dT = 0, (30)

and
d3Z

dT 3 + dZ
dT + cos2 θ = 0. (31)

As you notice, all the experimental parameters except
θ disappear in these differential equations and initial
conditions. Therefore, the trajectory of the plasma gas
in the dimensionless Cartesian coordinate system can
be calculated indifferently to the operating conditions
such as λ and vo.
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4. Solution in dimensionless
coordinates

4.1. Trajectory in the perpendicular field
To solve the differential equations (29-31) with the
initial conditions (21-23), the commercial software
Mathematica[7] was used. In a perpendicular mag-
netic field (θ = π/2), differential equations became
quite simple as

d3X
dT 3 + dX

dT = 0, (32)

d3Y
dT 3 + dY

dT = 0 (33)

and
d3X
dT 3 + dX

dT = 0. (34)

Initial conditions were

(X,Y, Z)T =0 = (0, 0, 0) , (35)(
dX
dT ,

dY
dT ,

dZ
dT

)
T =0

= (0, 0,−1) (36)

and (
d2X

dT 2 ,
d2Y

dT 2 ,
d2Z

dT 2

)
T =0

= (0, 1, 0) . (37)

The trajectory obtained in dimensionless coordinate
system was represented in Figure 4. At T = 0, the
plasma gas started from the origin(0, 0, 0) of the di-
mensionless Cartesian coordinate system (X,Y, Z)
and it moved along a circle on a Y-Z plane in the
clock-wise direction with the increase of T.
While for θ = 3π/2 , equations (32-34) and initial

conditions (35-36) were same but the third initial
condition was different from equation (37). It was
described as(

d2X

dT 2 ,
d2Y

dT 2 ,
d2Z

dT 2

)
T =0

= (0,−1, 0) . (38)

The resulting trajectory was illustrated in Figure 5.
Both trajectories shown in Figure 4 and Figure 5 are
mirror symmetrical with respect to a X-Z plane at
Y=0.

4.2. Trajectory in the oblique field
In case of an oblique field (θ 6= π/2), differential equa-
tions (29-31) were solved under the initial conditions
(21-23) for various values of θ. The plasma gas de-
scribed a helical line as its trajectory. The projection
of the helix in the plane normal to b was a circle with
radius equal to sin θ. The center of the circle moved
in the direction of −b (anti-parallel to b) at the con-
stant velocity equal to cos θ. For 0 < θ < π/2 , the
trajectories in the magnetic field with the intersection
angle θ and that with θ+ π were illustrated in Figure
6 and in Figure 7 respectively. These two trajectories
were mirror symmetrical to each other with respect
to a X-Z plane at Y=0.

Figure 4. The movement of the plasma gas under
the perpendicular field (θ = π/2) in the dimensionless
space.

Figure 5. The movement of the plasma gas under the
perpendicular field (θ = 3π/2) in the dimensionless
space

The trajectory in the magnetic field with θ + π/2
and that with θ + 3π/2 were also calculated. It was
known that the trajectories in the field with θ and
with θ+ π/2 were mirror symmetrical with respect to
a Y-Z plane at X=0. The trajectory in the field with
θ + π and that in the field with θ + 3π/2 were also in
similar symmetry.

5. Arc motion in real coordinates
The trajectories of the plasma gas in a real space
are obtained by the inverse transformation of the
dimensionless coordinates (X,Y, Z) to the dimensional
ones (x, y, z) using equations (17-19). Arc profile is
represented by the trajectory of the plasma gas from
the torch exit to the anode. Numerical calculations
on the deformation of arc profiles with the change of
B were carried out under the operating conditions
Q = 3.0 × 10−4 kg s−1, I = 90 A , and vo = 80 m−1.
It was assumed that the anode plane located at the
position of z = −L = −5.0× 10−2 m.

5.1. Arc motion in the perpendicular field
In the perpendicular magnetic field (θ = π/2), the arc
profiles for various magnitude of B are obtained by
the inverse transformation along the circle shown in
Figure 4. Deformations of the arc profiles with the
change of B are illustrated in Figure 8. For B = 0,
the position of the arc root on the anode locates at
A0 and it moves along the y-axis through A1 and A2
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Figure 6. The movement of the plasma gas under
the oblique field (0 < θ < π/2) in the dimensionless
space

Figure 7. The movement of the plasma gas under
the oblique field (π < θ < 3π/2) in the dimensionless
space

to A∗ with the increase of B. If the magnitude of B is
larger than this critical strength B∗, the arc goes up
without contact with the anode. In such situation, the
arc becomes unstable as the circuit of the arc current
destroys. The critical magnetic field is expressed as

B∗ = voQ

IL
(39)

The maximum displacement of the anode root A∗

equals L.
In the perpendicular field for θ = 3π/2, the arc

profiles for various magnitude of B are shown in Figure
9. The whole view of the arc oscillation driven by
alternating magnetic field is shown in Figure 10. The
arc oscillates in a flat y-z plane.

5.2. Arc motion in the oblique field
The arc profiles in the oblique magnetic field with
the intersection angle of θ = π/6 are shown in Figure
11, where the helical motion in Figur 6 is replaced
by the inverse transformations into different helical
motions with various values of B. The plasma gas
travels on the three dimensional curved plane. The

Figure 8. The movement of the plasma gas under the
perpendicular field of θ = π/2 in the real space

Figure 9. The movement of the plasma gas under the
perpendicular field of θ = 3π/2 in the real space

arc root on the anode plate moves in the counter-
clockwise direction with the increase of B. When the
intersection angle of the field is θ = 7π/6, the arc
profiles are mirror symmetric with respect of a x-z
plane at y = 0. The whole view of the oscillatory arc
in the oblique alternating magnetic field is illustrated
in Figure 12.

5.3. Experimental confirmation
Experimental observation was performed under the
operating conditions Q = 3.0× 10−4 kg s−1, I = 90 A
and vo = 80 m−1. The sinusoidal alternating magnetic
field was imposed at the frequency f = 50 Hz, and its
amplitude was B = 2.0× 10−3 T. The oscillatory arc
in the perpendicular field and that in the oblique field
were shown in Figure 13. Although many simplified
assumptions were used in the modelling, experimen-
tal results confirmed the validity of the theoretical
consideration.

6. Conclusions
The authors have developed a heat treatment system
with the magnetically driven arc. To improve the sys-
tem, arc behaviours in various operating conditions
were investigated theoretically. In the simulation of
the arc motion, non-dimensional analysis was pro-
posed, where the momentum equation for the plasma
gas was converted into the dimensionless equation
using the characteristic time and length. When these
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Figure 10. Oscillatory motion of the arc under an
alternating field imposed perpendicularly

Figure 11. The movement of the plasma gas under the
oblique field (θ = π/6) in the real space

characteristic time and length were defined pertinently,
the dimensionless momentum equation became inde-
pendent of the operating conditions B, Q, I and vo.
Therefore, the trajectory of the plasma gas motion
calculated in this dimensionless coordinate system was
also independent of the operating parameters. The
arc motions in the real space were obtained by the
inverse transformations of the trajectory in dimension-
less coordinates system.
Main results obtained from the numerical calcu-

lations are as follows: In an alternating magnetic
field applied perpendicularly, the arc oscillates on a
flat plane. The amplitude of its oscillatory motion in-
creases with the increase of the magnetic field strength.
But the arc becomes unstable when B exceeds the
critical strength equal to Qvo/IL. The arc describes
a part of a circle, the radius of which depends on B.
While the magnetic field is applied obliquely to the
arc, the arc oscillates on a curved plane. The arc
describes a helical line, the curvature of which also
depends on B. Theoretical predictions were confirmed
by the experimental observations.
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