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Abstract — The development of the drivetrain for a new 

series of urban electric buses is presented in the paper. The 

traction and design properties of several drive variants are 

compared. The efficiency of the drive was tested using 

simulation calculations of the vehicle rides based on data 

from real bus lines in Prague. The results of the design work 

and simulation calculations are presented in the paper. 
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I. INTRODUCTION 

The main goals of the project can be summarized as 
follows: 

1. Proposal of a new concept for a drivetrain with 
increased efficiency. 

2. Specify the main parameters of the drivetrain 
components. 

3. Verification through simulation and optimization 
of the parameters for the drivetrain components 
(simulation of vehicle driving in real routes, 
evaluation of traction and energy parameters). 

4. Specify battery cell parameters. 

5. Verify experimentally the properties of 
considered battery cells and the measurement 
results in the use of simulation calculations. 

6. Proposal of the electromechanical converter 
design. 

7. Proposal regarding the construction and control 
of the converter part. 

8. Proposal regarding the construction of battery 
equipment and battery management system. 

9. Implement the drive unit and the converter 
equipment. 

10. Perform laboratory tests of the drive unit and 
converter equipment. 

11. Install the drive system, converter equipment, 
and battery on the vehicle. 

12. Realize commissioning of the drive system. 

13. Conduct extensive testing and evaluation of the 
system. 

The Faculty of Mechanical Engineering of CTU in 
Prague is mainly involved in activities 1 to 5, 10 and 13 of 
the mentioned above points. At present, the activities in 
points 1, 2, 3 are currently being processed. An 
experimental background for testing battery cells 
according to point 5 has been implemented. 

II. ELECTROBUS POWER SUPPLY STRUCTURE 

The structure of the electric bus drivetrain is relatively 
simple and standard. The input DC circuit of the traction 
inverter is supplied from the rechargeable battery via a 
bidirectional DC / DC converter which supplies the three-
phase motor. There is a system of mechanical energy 
transfer to the axle. 

The DC / DC converter is used to adjust the voltage 
levels of the battery and the input of the traction inverter. 
At the same time, it stabilizes the input voltage of the 
inverter and eliminates battery voltage fluctuations due to 
its discharge and voltage drop at the internal resistance. 

The traction inverter has a standard connection; it is a 
three-phase bridge with six IGBTs and six flyback diodes. 
The traction inverter forms an output three-phase system 
using pulse width modulation (PWM).  

The innovation compared to current SOR electric buses, 
which are equipped with traction induction motors, is the 
vision to use a permanent magnet synchronous motor 
(PMSM). Using a PMSM can be characterized in the 
following points: 

• Smaller dimensions and weight compared to 
induction motor. 

• Larger torque overload than an induction motor (up 
to 3×). 

• Instantaneous response for the transition to 
electrodynamics’ brake due to permanent magnet 
excitation. 

• The necessity of solution of motor disconnection in 
case of traction circuit faults (magnetic flux is 
permanent in motor). 

A dominant feature of PMSM compared to induction 
motors is the reduction of dimensions and weight. Several 
differences are compared to the asynchronous motor, also 
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in the solution of the torque control structure and the 
necessity of using the rotor angle sensor. This issue was 
previously addressed in [6]. 

A conceptual issue that has not yet been resolved is the 
concept of transferring mechanical energy from the 
electric motor shaft to the axle. An axle gearbox is used in 
each case. Further, the structure of mechanical 
transmission may be processed via two options: 

1. Transmission from the motor shaft directly to the 
input axle transmissions. 

2. Inserting a shiftable gearbox between the engine 
and axle transmission. 

In the case of a shiftable gearbox, two gear reductions 
are considered. The first gear reduction with the transfer 
gear embedded 1.8 and the second gear reduction where 
the torque is transmitted from the engine directly to the 
input axle transmission i.e. with the first gear. The 
insertion of a shiftable gearbox complicates the design and 
deteriorates driving characteristics, especially the pulling 
and braking forces of the gear shift. On the other hand, 
using a shiftable gearbox provides background for smaller 
dimensions and weight of the motor to achieve a higher 
climbing rate and use of a lower voltage. Support for the 
decision on the final version is obtained by simulation 
calculations of the vehicle on specific routes. 

III. SPECIFICATION OF MAIN DRIVE PARAMETERS 

When designing the main drive and motor parameters, 
it is necessary to take into account the main requirements 
of the vehicle and other limiting requirements given by the 
design of both mechanical and electrical parts. For a quick 
calculation of basic parameters, especially for the electric 
motor, the calculation of parameters in the MS EXCEL 
was prepared at CTU Faculty of Mechanical Engineering. 
The calculation assume the use of a permanent magnet 
synchronous motor (PMSM). The following values are 
entered as input variables: 

• Limit voltage Umax, which is limited primarily by 
the voltage level of the power semiconductor 
components of the traction converter. The 
maximum voltage is limited to 1000 V for safety 
reasons and mainly for reasons of legislation, so 
that people trained for low voltage could work on 
that equipment. 

• Total mechanical gear reduction ratio itotal is 
specified as the product of individual gearbox gear 
ratio. 

• The total efficiency of the transmission ηtotal is the 
product of both gearboxes efficiency. 

• Wheel radius rw. 

• Maximum vehicle speed vmax. 

• The relative speed of the motor to field weakening 
related to the maximum motor speed nFluxweakening. 

• The relative voltage drop across R and L on motor 
impedance ΔURLrel at a nominal speed of the motor. 

• Weight of the vehicle mv.  

• Climbing rate of the vehicle in %. 

• Vehicle acceleration at maximum climb. 

• The sum of the driving resistances of vehicle Fdr in 
addition to the resistance from acceleration and 
resistance from the climb (air resistance, rolling 
resistance, resistances in vehicle components) – is 

given as constant, approximate, value and applies 
approximately to start and for low speed. 

• Rotational mass coefficient ξ. 

• Motor overload capacity pM as the ratio of 
maximum and nominal torque. 

• Motor efficiency ηM – estimate. 

• Motor power factor cosφn – estimate. 

• Maximum and minimum cell voltage battery 
Ucellmax and Ucellmin. 

• Maximum battery voltage Ubatmax. 

• Inverter efficiency ηInv – estimate. 

The calculation is based on the definition of the motor 
nominal values (voltage, current, torque) with which the 
motor can be operated indefinitely and on the overload 
limit values where it can operate for a limited time. If the 
motor is running in overload, the operation time is 
dependent on the amount of instantaneous overload. Due 
to the vector control torque motor structure, the equality of 
torque and current overload is assumed in the calculation. 
This equality applies exactly when flux weakening is not 
used. In flux weakening this equality is approximate. With 
the increasing speed at constant current overload, the 
torque overload decreases. 

The calculation procedure is discussed in literature [1], 
[7]. Based on calculations 18 options of electric motors 
and gearboxes parameters were determined, and from 
these ten options, two priority options were selected. One 
with shiftable gearbox, the other with fixed torque 
transmission from motor to the axle gearbox input. The 
options can be characterized by the following main 
parameters: 

 

Fixed gear variant: 

Nominal motor power   161 kW 

Vehicle climb rate   20 %  

Vehicle weight    19.4 t  

Voltage limit    750 V 

Maximum vehicle speed   80 km/h  

Total gear ratio (on axle)  7.36  

Acceleration at maximum climb  0.1 m/s2  

Nominal torque of motor  917 Nm 

Nominal speed of motor   1683 rpm  

Maximum speed of motor  3367 rpm 

Nominal voltage of motor  392 V 

Nominal current of motor  251 A 

Torque and current overload  3.23 

 

Shiftable gearbox variant: 

Nominal motor power   135 kW 

Vehicle climb rate   22 % 

Vehicle weight    19.4 t 

Voltage limit    750 V  

Maximum vehicle speed   90 km/h 

Total gear ratio (axle+shiftable gearbox) 13.25 

Acceleration at maximum climb  0.1 m/s2  

Nominal torque of motor  620 Nm 

Nominal speed of motor   2084 rpm 
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Maximum speed of motor  3789 rpm 

Nominal voltage of motor  324 V 

Nominal current of motor  281 A 

Torque and current overload  3 

Preferred shifting speed   50 km/h 

 

On comparison of the two variants, the shiftable 
gearbox has a smaller nominal power and smaller nominal 
current of the motor (323 A compared to 434 A) which 
makes the construction of the electric equipment simpler 
and quicker. On the other hand, the mechanical 
construction is more complicated. Also, the drops in the 
pulling and braking force during shifting are problematic. 
This gear shifting takes about 0.5 s. 

IV. CIRCUIT SOLUTION AND CONTROLLED PULSE  

RECTIFIER FUNCTION 

A simulation model for the calculation of bus behavior 
on defined routes was prepared. It was implemented for a 
detailed evaluation of the traction and energy properties of 
the drive unit. The input parameters of the model are: 

• Route parameters (stops, speeds, slopes). 

• Vehicle and drive unit parameters (weight, motor 
parameters, gear ratios, driving resistances). 

The whole calculation is based mainly on the numerical 
solution of the vehicle motion equation. 

The efficiency map is the basis for motor losses 
calculation. It is determined from the motor nameplate 
according to [1]. For illustrative purposes, Fig. 1 shows an 
efficiency map for a variable speed gear motor. 

 

 

 

Fig. 1. Efficiency map of the motor with shiftable gearbox. 

A rather complicated problem was the determination of 
the detailed route parameters, especially on the slope. The 
initial data was obtained via GPS. The route elevation was 
calculated from the height profile and the slope of route 
further from that. The route slope was determined from 
the height profile by parts of linear interpolation dividing 
into 20 linear sections. For further calculations, the route 
slope in a given linear section is considered to be constant. 
These simplifications are made in order to eliminate noise 
in the measured altitude data. Fig. 2 shows an example of 
the measured and linearized slope. 

Tab. 1 illustrates examples of energy consumption 
calculations for two routes. 

 

TABLE I.  
EXAMPLES OF SIMULATION CALCULATIONS – DRIVING WITH A NON-SHIFTABLE GEARBOX 

Route Length 

(km) 

Consumption 

(kWh)  

Without the slope 

Consumption 

(kWh/100km)  

Without the slope  

Consumption 

(kWh)  

With the slope  

Consumption 

(kWh/100km)  

With the slope 

Cycle SORT 2  0,937 0,78 83,3 – – 

Na Knížecí −> 

Jinonice, line 

137 

4,73 2,7 57 5,8 122,6 

Na Knížecí −> 

Jinonice, line 

137, trip 2  

4,73 2,2 46,5 5,9 124,7 

Na Knížecí −> 

Jinonice, line 

137, trip 3 

4,73 2,7 57 5,8 122,6 

Na Knížecí −> 

Jinonice, line 

137, trip 4 

4,73 2,2 46,5 5,9 124,7 

Smíchovské 

nádraží −> 

Sídliště Zbraslav 

13,2 9,2 69,7 
Slope is not 

available 

Slope is not 

available 
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Fig. 2. Route profile – measured and linear interpolation,  

route “Na Knížecí” ==> “Jinonice”, bus line 137. 

 

Fig. 3. Speed profile –measured and linear sections,  

route “Na Knížecí” ==> “Jinonice”, bus line 137. 

V. HIGH CAPACITY CELL TESTING FOR  

TRACTION BATTERY 

Battery cell parameters potentially usable for traction 
battery of the electric bus have been tested. Three types of 
cells are considered – cylindrical cells NMC with capacity 
2 Ah, cylindrical cells NMC with capacity 3.2 Ah and flat 
cells NMC with capacity 150 Ah. The testing system for 
150 Ah cells which is technically more complicated will 
be presented here. 

This section will demonstrate an innovative way of 
solving problems of high current source and load with 
constant current demand regulation. The task was to 
measure the charging / discharging characteristics of the 
150 Ah battery Lion cell with a nominal voltage of 3.7 V. 
The requirement was to charge and discharge the battery 
with a constant current 1 A. The initial idea was to use a 
modified welding inverter. However, we had to leave this 
solution according to the problematic availability of the 
source for 150 Ah of continuous load. Moreover, current 
control for such a low voltage was uncertain with the 
welding source. Another possible solution was to use 
a 3×400 / 6 V, 600 VA transformer with a rectifier. To 
obtain the output DC voltage, a six-pulse two-way 3-phase 
block rectifier with diodes ČKD Polovodiče D200/800 
was used. For current control, a frequency converter 
Danfoss VLT FC 302 in scalar mode was used. A 
feedback signal from DC / DC current converter 5000:1 
LEM LT500-T is connected to the input of current 
converter for feedback. 

 
Fig. 4. Overall scheme for battery cell measurement 150 Ah. 

For constant current discharge, a steel wire resistor of 
2.4 mm diameter is used. The resistor value was selected 
to have the desired current passing through it when heated 
to approximately 400 °C with voltage of 4.2 V. The 
resistor was cooled with an axial fan. When the battery 
voltage is reduced, the value of current and losses on the 
resistor is also reduced. Thus the resistance decreases and 
the current increases. For precise adjusting of the 
discharge current, the controller regulates the fan speed 
and thus the load resistor cooling and its resistance. 

 

 

Fig. 5. Recorded charging and discharging process of the cell. 

The possibility of non-conventional use of frequency 
converter as a control unit for a current source for battery 
charging and at the same time the possibility of regulating 
the discharge current by changing the temperature of the 
load resistor has been experimentally demonstrated. 

VI. CONCLUSION 

The considered variants are a drivetrain with the 
shiftable gearbox but with shifting minimization or with 
no shifting and driving with a permanently engaged gear 
1 (urban traffic) or 2 (intercity traffic in the flat section of 
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track). At the same time, the specification of the 
rechargeable battery is prepared on the basis of energy 
simulation calculations. 
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