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Abstract — The paper deals with the impacts of 
unbalance on the start-up behaviour of flexibly mounted 
rotors with viscous damping. It provides an overview of the 
dimensionless parameters describing the system in question 
as well as the properties determining the influence of 
various degrees of static unbalance on the system start-up 
behaviour for different driving torque scenarios, such as 
transient-state and steady-state differences as opposed to 
balanced rotors, vibration-induced power losses, etc. 
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I. MATHEMATICAL DESCRIPTION OF THE SYSTEM 

The mechanical diagram of the system in question is 
provided in Fig. 1. Here, m stands for the rotor mass, IS 
the rotor moment of inertia with respect to the rotation 
axis, e the eccentricity defining the rotor static unbalance, 
k the stiffness of the flexible mounting, B the viscous 
damping constant and M the resulting external forces 
torque acting on the rotor; x, y are the coordinates of the 
rotation centre S with respect to the rest position 0 and ϕ 
the angle of the position vector going through the rotor 
centre of gravity T. 
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Fig. 1. Mechanical system diagram. 

The equations of motion describing the system planar 
oscillations can be written as:  
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where mkn =ω  is the angular eigen frequency of the 

system oscillations and )2( mBb =  the relative damping 

factor. Dots above variables indicate their differentiation 
with respect to time. 

To reduce the number of the system parameters, the 
following dimensionless (standardised) quantities can be 
introduced: 
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where mIi S=  is the radius of the rotor inertia. After 

substituting the above quantities into (1), the 
dimensionless forms of the equations can be written as: 

 

,cossin

2sin)(cos

,2cos)(sin

******

***2*****

***2*****

Myexe

ybyeey

xbxeex

=ϕ+ϕ+ϕ−

−−ϕϕ=ϕϕ+

−−ϕϕ=ϕϕ−

&&&&&&

&&&&&&

&&&&&&

 (3) 

where dots above dimensionless quantities indicate their 
differentiation with respect to the dimensionless time  *t . 

II. EXCITATION WITH A LINEAR CHARACTERISTIC TORQUE  

Let us now examine how the system behaves under 
the effects of a torque corresponding to an independent 
excited motor with )(,0 ϕ=ωω−= &mm BMM  and the 

load torque .constM z =  The resulting torque 

zm MMM −=  can be written in the dimensionless form  

 ****
02

0* ω−−=
ω−−

= mz
mz bMM

ik

BMM
M  (4) 

where )(*
nSmm IBb ω= is the dimensionless motor 

parameter. 
In case of a balanced rotor, the system does not 

oscillate and the time history of the rotor angular velocity 
can be analytically written as 
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where )()()( z0
***

0
*
0 nmmz BMMbMM ω−=−=ω ∞  is the 

dimensionless steady-state angular velocity for e = 0. As 
for unbalanced rotors )0( ≠e , the non-linear system of 
equations was solved numerically using the Matlab 
software. 

Figure 2 shows an example of the trajectories of the 
rotation centre S and of the rotor gravity centre T during 
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start-up with e*= 0.02 and two different damping factor 
values of b* = 0.5 and 2. The time history of the 
dimensionless angular velocity depends on other 
parameters, specifically ),,,,( ***

0
****

mz bMMebtf −=ω . 
 

 

Fig. 2. Trajectories of the rotation centre S and the gravity centre T 
during rotor start-up. 

However, after introducing the standardised quantities 

∞∞ ωω=ωω=ω 0
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 (instantaneous angular velo-

city with respect to the steady-state value with e = 0) and 
τ= /ttnorm , where mBIS=τ  is the start-up time 

constant, normω  will depend only on the parameters tnorm , 

e* and b*, i.e. ),,( ** betf normnorm =ω . Figure 3 shows 

this relationship for 2* =b  and 06.0;0*e . It clearly 

demonstrates that in case of unbalanced rotor steady-state 
revolutions (marked as ∞ωe ) decrease with increasing e.  
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Fig. 3. Unbalanced rotor start-up. 

Figure 4 shows the impacts of 1.0;0*e  and 

10;0*b  on the ∞ω∞ω 0e  ratio. The resulting decrease 

in revolutions and thus the power transferred to the load 
is caused by energy losses in the damper. 
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Fig. 4. Relation of steady-state revolutions to e* and b*. 

The power loss ratio can be written as 
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The diagram for different values of e* and b*, 
provided in Fig. 5 above, shows that extreme values can 
lead to significant losses of available power. 

 
Fig. 5. The impact of e* and b*on energy losses. 

III.  EXCITATION BY A NON-LINEAR TORQUE WITH 

INDUCTION MOTOR CHARACTERISTICS 
The following example shows how the system 

behaves when excited by a non-linear torque with the 
induction motor characteristics ( Kloss equation) 
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where syns ωω−= 1  is the slip in respect of the 

synchronous angular velocity synω , and σ  the parameter 

defining the slip value for which the  torque has the 
maximum value of 0M . After substituting for s the 

following formula can be obtained, showing how the 
torque relates to the angular velocity:  
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Figure 6 shows the resulting curve for 25.0=σ , in 
which case the maximum is reached at 

synsynM ωωσω 75.0)1( =−= . 
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Fig. 6.  Induction motor torque characteristic. 

Similarly to the previous case, let us now introduce 
dimensionless variables according to equation (2) and 

assume a constant load torque zM . The dimensionless 

form of the resulting torque can be written as: 
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In case of a balanced rotor, the steady-state 
revolutions ∞ω0  can be calculated using the balance of 

the driving and load torques:  
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For instance for 
04.0and25.0 MM z ==σ  equals to 

synωω 948,00 =∞ . Considering the non-linearity of the 

equations, the time histories have to be calculated 
numerically. The results can again be generalised by 
introducing the standardised quantities 

synnorm ωωω =  and 
synnnorm tt ωω /2= . 

In this case, the standardised angular velocity 

),,,,( **
0

* σ=ω znormnorm MMbtf . 

Figure 7 shows the angular velocity time history during 
system start-up with 

25.0,4.0,1.0,2 *
0

**
0

* ==== σMMMb z
. 

The figure clearly shows that increasing unbalance 
results in a decrease of steady-state revolutions; after a 
certain value of e* is exceeded (in this case e* = 0.045), the 
system steady state revolutions are lower than the value 
corresponding to the motor maximum  torque, resulting in 
the motor running under unfavourable operating 
conditions. 

Figure 8 shows the relation between an unstable rotor 
steady-state angular velocity ∞ωe  and the stable rotor 

velocity ∞ω0  for different values of e* with the given 

system parameters. 
Similarly to the previous example, the loss of power 

transferred to the load can be defined according to 
equation (6). 

 

 
Fig. 7. Start-up of an unbalanced rotor. 

 

 
Fig. 8. The effects of e* and b* on steady-state revolutions. 

 

The curves of the relative losses δ for different values 
of e* are provided in Fig. 9. 

 
Fig. 9. The effects of e* and b* on performance losses. 

 

IV. CONCLUSION  

The results presented in this paper show some of the 
potential issues of compensating the dynamical forces 
transferred by unbalanced rotors to the base by means of 
flexible mounts. Inertial forces acting upon an 
unbalanced rotor produce a torque opposite to the driving 
torque, resulting in a start-up and steady-state revolution 
decrease. This leads to losses of power transferred to the 
load, with energy being dissipated in the damper. 
However, calculations show that the effects of small 
imbalances are not too significant; the impacts of rotor 
unbalance are more pronounced only with higher 
eccentricity and damping factor values. 
 

e*  

 
∞
∞

ω
ω

0

e
 b* = 0,2 

 2 

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.01 0.02 0.03 0.04 0.060.05

 1 

0 0.2 0.4 0.6 0.8 1.0

0M

mM 1.0

0.8

0.6

0.4

0.2

0

 

synω
ω

norm

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 20 40 60 80
t 

synω 
ω 
synω 
ω 

100

e * = 0 0,02 
0,045 

0,05 

0,055 

0,06 

0,04 0,03 
e * = 0 0,02 
0,045 

0,05 

0,055 

0,06 

0,04 0,03 

2 
4, 0 

25, 0 
1, 0 

* 
* 
0 * 

* 
0 

= 
= 

= σ 
= 

b 
M M 

M 

z

2 
4, 0 

25, 0 
1, 0 

* 
* 
0 * 

* 
0 

= 
= 

= σ 
= 

b 
M M 

M 

z

  0 

10 
20 

30

40 

50 

60 

0 0.01 0.02 0.03 0.04 0.06 0.05 

 2 

 (%)δ

e*  

 1 

 b* = 0,2 



Transactions on Electrical Engineering, Vol. 4 (2015), No. 1   4 

TELEN2015002 

REFERENCES 
[1] A. Bedford and W. Fowler, Engineering Mechanics – Statics & 

Dynamics, Pearson Prentice Hall, Pearson Education Inc., New 
Jersey, 2005. 

[2] J. Vondřich and S. Jirků, “Applications of Modeling of Machine 
Systems and Simulations of their Operating Behavior,” 
Proceedings of the Nineteenth IASTED International Conference 
Modeling, Identification and Control, pp. 615-619, Innsbruck 2000. 

[3] P. Kočárník and S. Jirků, “Simulation of Systems with Mechanical, 
Hydraulic and Thermodynamic Elements,” in Journal of Machine 
Engineering. Efficiency Development of Manufacturing Processes. 
Vol. 6, No. 4, 2006. Editorial Institution of the Wroclaw Board of 
Scientific Technical Societies Federation NOT, Wroclaw, Poland. 
pp. 104-114. ISSN 1895-7595. 

[4] J. Vondřich, E. Thöndel, and R. Havlíček, “Control of Machine 
Vibration with Absorber,” in: Journal of Machine Engineering. 
Efficiency Development of Manufacturing Processes. Vol. 6, No. 3, 
2006. Editorial Institution of the Wroclaw Board of Scientific 
Technical Societies Federation NOT, Wroclaw, Poland, pp. 72-79. 
ISSN 1895-7595.  

[5] E. Thöndel, “Electric Motion Platform for Use in Simulation 
Technology – Design and Optimal Control of a Linear 
Electromechanical Actuator,” in Lecture Notes in Engineering and 
Computer Science. Hong Kong: IAENG International Association 
of Engineers, 2010, pp. 960-965. ISBN 978-988-18210-0-3. 

[6] J. Vondřich, J. and E. Thöndel, “Engineering Design of Machines 
with Rotating Members,” in Proceedings of the Eighth Latin 
American and Caribbean Conference for Engineering and 
Technology, June 01–June 04, 2010 Arequipa, Peru [CD-ROM]. 
Lima: Pontificia Universidad Catolica, 2010, ISBN 0-9822896-3-4. 

[7] J. Vondřich, J. and E. Thöndel, “Modeling Suppression of Non-
linear Machine Vibration,” Journal of Machine Engineering, 2010, 
Vol. 10, No. 2, pp. 45-50. ISSN 1895-7595. 


