
Transactions on Electrical Engineering, Vol. 3 (2014), No. 3 69

Real-time Simulation of 3 Parallel PWM
Rectifiers

Michal Kopecký 1), Jan Švanda 2) and Martin Vlček 3)

ŠKODA ELECTRIC, a.s./SW2 Prague Department, Plzeň, Czech Republic
1) e-mail: michal.kopecky@skoda.cz

2) e-mail: jan.svanda@skoda.cz
3) e-mail: martin.vlcek1@skoda.cz

Abstract — This paper describes the development of a
real-time model up to 3 parallel PWM rectifiers and its
implementation on FPGA using LabVIEW development
environment. The main benefit of this real-time model is the
fact that there is no need for a real device or a test stand for
debugging of traction drive control SW. The Hardware-in-
the-Loop testing with similar RT model of an induction
machine has already brought large financial and time
savings. Moreover, destructive states or states difficult to
evoke can be tested using such a real-time model.

Keywords — PWM rectifier, real-time simulation, Hardware-
in-the-Loop (HIL), LabVIEW FPGA, traction drives control SW.

I. INTRODUCTION

A. Simulated System

The simulated system (see Fig. 1) consists of three
parallel branches with one-phase PWM rectifiers
connected to the common DC link circuit. Usage of this
AC/DC conversion system brings following main
advantages: possibility of energy recovery, consumption
of sinusoidal current and DC voltage stabilization.

Each one-phase PWM rectifier consists of 4 IGBT
transistors which form a full bridge. The system is
controlled by generation of PWM signals at these
transistors [1]. The use of three parallel branches allows
reduction of power transmitted by each branch. Moreover,
the 3 parallel PWM rectifiers can be controlled with offset
to each other. Such a control can damp desired frequency
band in the input AC current spectrum in order to fulfil
the EMC limits.

B. Model Adaptation on Less Parallel PWM Rectifiers

 A very important thing to be mentioned is that the
model of 3 parallel PWM rectifiers could be easily used to
simulate a system with only two or one parallel branch.
One of the branches is not considered if we set resistance
Ras to a huge magnitude (e.g. 1010 Ω) and the
transformation ratio p to zero (this causes zero secondary
voltage uas) and ensure that the transistors in the
disconnected rectifier are switched off. For example, the
configuration with two secondary windings was used in
the electric multiple unit Škoda 7Ev-RegioPanter. The
AFE control SW for this unit was the first application
which was tested with the real-time model.

C. Connection System Simulation

The model provides also the simulation of the system
connection in the right order as well as failure states (see

TABLE I). For this purpose there are 4 switches
introduced into the model: S0 (Start Voltage), S1
(Charging Contactor), S2 (Line Contactor) and S3 (Load
Contactor). It should be mentioned that the switches in
parallel branches are coupled, i.e. they can be either on or
off in all parallel branches.

TABLE I.
SWITCHING LOGIC FOR SIMULATION OF SYSTEM CONTROL

Switches States

S0 S1 S2 S3
System State

0 0 0 0 Nothing is simulated.

1 0 0 0
Primary voltage connected, all secondary
windings open.

1 1 0 0
Connected over charging resistance,
Capacitor started charging.

1 1 1 0 Charging resistance bridged.

1 1 1 1 Current load connected. Operational state.

1 0 1 0
Charging over small resistance. Huge
currents. Failure state

1 1 0 1
Charging with connected load.
Overcurrents. Failure state.

From the point of view of simulation, all system states

with S1 switched on lead to the same model only with
different parameters (of resistance or current load). For
this reason, we will discuss below only how the
operational state with all switches on can be simulated.

II. STATE SPACE MODEL

A. Transformer
The first issue to be considered is the separation

of the primary circuit from the rest of the system.
The model of the secondary side requires secondary

voltages as input. These could be computed from the
primary input voltage easily using the transformation
ratios:

1 11

2 12

3 13

as ap

as ap

as ap

u p u

u p u

u p u

=

=

=
. (1)

On the other hand, the information about primary
current iap has to be provided to the system controller.
Once all secondary currents are computed in the state

Transactions on Electrical Engineering, Vol. 3 (2014), No. 3 70

space model, the primary current can be obtained by
formula:

Equations (1) and (2) allow elimination of primary
circuit from simulation. Therefore, the only secondary
side can be considered below.

Fig. 1. Block diagram of the simulated system

B. State Space Representation

The mathematical model of the simulated system relies
on the state space representation:

Because the 3 parallel PWM rectifiers are connected to

the same DC link, it is impossible to solve equations for
each branch independently, but it is necessary to solve
system describing the whole circuit with matrix A
of dimension 4x4.

There are four state variables – inductor currents and
capacitor DC voltage, forming the state vector:

The input vector (5) contains 3 secondary voltages, DC

load current and also diode and transistor forward
voltages. These values are constant but the dependence of
state and output variables on them varies in different
system states.

1

2

3

as

as

as

l

D

T

u

u

u
u

i

U

U

 
 
 
 

=  
 
 
  
 

. (5)

The output vector consists of all other quantities in the
circuit, i.e.:

1

1

1

2

2

2

3

3

3

av

R

L

av

R

L

av

R

L

d

u

u

u

u

u
y

u

u

u

u

i

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
   

.
(6)

Unlike the most common problems, the state matrices
are not constant in time in our case. But they change
according to the individual states of each parallel circuit.
These states are determined by the semiconductor
elements which current flows through.

11 1 12 2 13 3ap as as asi p i p i p i= + + . (2)

 x Ax Bu

y Cx Du

= +
= +

&
. (3)

1

2

3

as

as

as

d

i

i
x

i

u

 
 
 =
 
  
 

. (4)

Transactions on Electrical Engineering, Vol. 3 (2014), No. 3 71

Because solving of the state space system is relatively
easy and well known problem, the crucial point of the
model development is to invent the switching algorithm
which selects the appropriate state matrices in the current
simulation step.

C. State Matrices Construction

Before analysing the possible circuit states, the part-by-
part matrices construction (see TABLE II) is introduced.
This construction, which substantially simplifies the
whole switching algorithm, is based on the independence
of individual parallel branches on each other. This is due
to the fact that the state of each parallel branch depends
only on the quantities in this branch and DC link voltage
but this state is independent of the other branch quantities.

TABLE II.
OVERALL STATE MATRICES COMPOSING OF ROWS CORRESPONDING TO

INDIVIDUAL PWM RECTIFIERS

Branch Matrices, Rows
Corresponding
variables

1st row of matrix A

1st row of matrix B
ias1

1st to 3rd row of matrix C

1st PWM
Rectifier
branch

1st to 3rd row of matrix D
uav1, uR1, uL1

2nd row of matrix A

2nd row of matrix B
ias2

4th to 6th row of matrix C

2nd PWM
Rectifier
branch

4th to 6th row of matrix D
uav2, uR2, uL2

3rd row of matrix A

3rd row of matrix B
ias3

7th to 9th row of matrix C

3st PWM
Rectifier
branch

7th to 9th row of matrix D
uav3, uR3, uL3

Further, the id current is computed as a linear

combination of ias currents according to which parallel
branches are connected to the DC link and with
orientation of which in the current time step:

1 1 2 2 3 3d as as asi k i k i k i= + + , (7)

where coefficients k1, k2, k3 are assumed to be 0 or ±1.
The last rows of the state matrices can be constructed
using these coefficients:

()
()

31 2
4,

1 1 1

4,
1

10, 1 2 3

10,

0

1
0 0 0 0 0

0

0 0 0 0 0 0

kk k
A

C C C

B
C

C k k k

D

⋅

⋅

⋅

⋅

=

 
=  
 

 
= − 
 

=

.
(8)

III. STATE SWITCHING ALGORITHM

Because of the independence of each parallel branch
state on other branches we can consider only the state

switching for one PWM rectifier. Once the next states in
all parallel branches are determined we can construct the
state index vector of 3 elements and according to the
TABLE II also the state matrices for the next time step
computation.

A. Possible States of One PWM Rectifier

We will follow the algorithm development history
describing also the problems we came across during it.

Theoretically, there are 24 = 16 possible states needed to
be involved for the full description of one PWM rectifier
considering all possible combinations of semiconductor
elements conduction. In fact, the number of all possible
states can be reduced to 7 by excluding prohibited states
(short-circuited branch – causes error of application) and
by merging some switching combination into one (in
terms of external behavior it does not matter e.g. the
sequence of transistor and diode conducting).

B. Basic State Switching Model

This simplest model was used only for simulation of the
uncontrolled single phase rectifier (i.e. diode bridge).
In this case there are only 3 system states:

Open circuit (No. 1),
Positive branch conduction (No. 2) and
Negative branch conduction (No. 3).

However as we shall see later, it is not sufficient in a
more complex situation.

The main idea of this model is very simple. Before each
step of the state space model a sequence of conditions is
evaluated and the first fulfilled condition determines an
appropriate state.

It is important to mention that here as well as in the
whole paper the algorithm depends on the sequence of
condition evaluation. More than one condition can lead to
the given state, e.g. the state No. 3 (see Fig. 3) can be
chosen if one of the following conditions is fulfilled.

if (ias <= -Ias_Min & direction < 0)
%Current is flowing in negative
direction and was flowing in this
direction also in the previous step
elseif (-uas+uR+uL-ud) >= 2*UD
%Zero current in circuit and there is
sufficient voltage to diode D3 and D2
begin conducting.

C. Correction of Negative Current id

The calculated AC current ias can change its sign
between two consecutive simulation steps. As a
consequence, also the DC current id changes its sign from
plus to minus. However, this is not physically possible.

The global variable direction used by decision on
the next state, avoids simulation to go to a wrong state on
the basis of that established configuration only. However,
already computed solution at that simulation step would
stay wrong (blue curve in Fig. 2).

A very simple additional condition was introduced into
the model, which returns id up to 0, whenever id < 0
occurs (green curve in Fig. 2).

Transactions on Electrical Engineering, Vol. 3 (2014), No. 3 72

D. Infinitesimal Occurrence of Open State

We observed that the system cannot immediately
change its state by the current ias zero crossing – the state
No. 1 (open circuit) always has to occur at least for one
time step.

This treatment works fine for an uncontrolled rectifier
(with nonzero diode threshold voltage UD). However, it
brings problems in the simulation of PWM controlled
rectifiers

. We will demonstrate them on our model situation. Let
us consider situation with transistor T2 constantly closed
(e.g. pwm = [0 1 0 0]) and system being in the state No. 5,
when T2 and D4 conduct (see Fig. 4).

5.02 5.04 5.06

x 10
-3

-10

-5

0

5

10

Time [s]

i d
[A

]

without correction
with correction

Fig. 2: Correction of the current id

D2

il

id

ud

ilias

UD

UD

uLuR
ias

uas -uas uav

D3

-ias

C1

Fig. 3: State No. 3 diagram (diode D3 and D2 conducting)

uLuR
ias

uas uav

UD

UT

il

il

udC1

D4

T2

Fig. 4: State No. 5 diagram (transistor T2 and diode D4 conducting)

The value of short-circuit current ias is continuously
decreasing until it changes its sign in one particular
simulation step. In this case the system should go to the
already known state No. 3 which would also correspond to
the physical reality. Unfortunately, the global variable
direction=1 does not allow smooth state transition
and the intermediate state No. 1 (open circuit) is set for
one simulation step. As a consequence, the step change of
voltages uav and uL occurs in this step (see Fig. 5).

Let us remark that the solution does not bring omission
of the global variable direction from the algorithm
switching. In this case, smooth transition from the state
No. 5 to the state No. 3 occurs without any problems.
However, the very next state transition fails. In that case
the system in the state No. 3 should not move to the state
No. 5 but the state No. 1 should be established.
Unfortunately, the switching algorithm does not catch this,
because of missing condition with the global variable
direction . As a consequence, the wrong state No. 5 is
established and this wrong decision results into oscillation
of the numerical solution (see Fig. 6).

From the description above we can conclude that the
key issue of the whole switching algorithm is to determine
if the ias current zero crossing is or is not physically

realistic. This reality is done by voltages relationships
in the simulated circuit.

The final solution of the problem described above has
brought infinitesimal occurrence of open state philosophy
which relies on the following idea: if the current ias
changes its sign between two consequential steps, we can
suppose that the open circuit state (No. 1) always occurs
for infinitesimally short moment (shorter than the
simulation step!). The consequence of this occurrence are
settings ias = 0, uR = 0 and uL = 0. While a reason for the
zero resistance voltage is obvious, by inductance voltage
uL we can imagine that the through-going current is for
very short time, but still constantly zero and therefore
also its derivative is zero. After this infinitesimal
occurrence of open circuit state the voltages conditions for
transition to the states with different ias current sign can be
evaluated and if some of them is fulfilled, the system
could go to the appropriate state. It is important to remark
that the values of quantities by infinitesimal open circuit
state occurrence do not appear in numerical solution, in
contrast to Fig. 5.

By the way, this approach has introduced the current
state knowledge into our state switching algorithm, which
will be necessary in all state switching managers listed
below.

Transactions on Electrical Engineering, Vol. 3 (2014), No. 3 73

0.0118 0.01180.01180.01180.0118 0.0119

-800

-600

-400

-200

0

200

Time [s]

A
m

pl
itu

d
e

[V
],

 [
A

]

uas
ias
uav
ul
ud

Fig. 5: Vault of voltages uav and uL by setting of the intermediate state

No. 1

0 0.01 0.02 0.03 0.04
-5000

0

5000

10000

15000

Time [s]

A
m

p
lit

u
de

 [
V

],
 [

A
]

uas
ias
uav
ur
ul

Fig. 6: Oscillation of uav and uL caused by omitting the global variable

direction condition

E. Model with Groups According the ias Current
Direction

 According considerations above we introduced the
concept of state partition into two groups according to the
sign of the current ias. The default state No. 1 with zero ias
current stands out of both groups. Whereas a transition
between two states in the same group proceeds
immediately, a transition between two states from
different groups is possible only with infinitesimal
occurrence of the open circuit state.

For practical implementation of such a switching
algorithm, we have left the separate condition principle.
Now, the state conditions are evaluated together in two
functions:
function state_index =
Group1_conditions(ias, uas, uR, uL,
ud, pwm) ,
function state_index =
Group2_conditions(ias, uas, uR, uL,
ud, pwm) .

These functions start with the state No. 1 (i.e.

state_index = 1) and process conditions for
individual states bottom-up according to the state index.
Finally, the function returns the state with the highest
index in the appropriate group where the conditions are
met. If the function returns the default value 1 it means
that no conditions for any state in the group are fulfilled.

The next state alone is chosen in

function new_index =
choose_state_using_Groups(index, ias,
uas, uR_o, uL_o, ud, pwm) .

First, there are evaluated conditions for the state in the
same group in the function Group i_conditions
(appropriate function is determined by group index i
according to the state in the previous time step). As inputs
to this function, the just computed state variables values,
the current value of the voltage uas and the values of the
voltages uR and uL from the previous time step are sent. If
none of these conditions is met (i.e. function
Group i_conditions returns one), the second
function belonging to the other group is called as well –
but in the inputs there are the values of ias, uR a uL replaced
by zeros (because of the infinitesimal open state circuit
occurrence).

In case the previous state index is equal to 1, there are
called both function with the classic inputs and for the
next state index maximum of both returned values is
chosen.

We attach the MATLAB source code of the switching
manager described above:

switch index %Decision-making
according the previous state index
 case {2,5,7} %Group1 (ias > 0)

new_index = Group1_conditions(ias,
uas, uR_o, uL_o, ud, pwm);
if new_index == 1 %No state
conditions in group 1 fulfilled

new_index =
Group2_conditions(0, uas, 0, 0,
ud, pwm);

end
 case {3,4,6} %Group2 (ias < 0)

new_index = Group2_conditions(ias,
uas, uR_o, uL_o, ud, pwm);
if new_index == 1 %No state
conditions in group 2 fulfilled

new_index =
Group1_conditions(0, uas, 0, 0,
ud, pwm);

end
 case 1 %Open circuit

new_index =
max(Group1_conditions(ias, uas,
uR_o, uL_o, ud, pwm),
Group2_conditions(ias, uas, uR_o,
uL_o, ud, pwm));

end

The advantage of this switching manager is not only the

solution of both problems described above but also the
relatively easy portability on FPGA because the switching
algorithm takes the same amount of time in every step.
Moreover, the evaluation of both functions
Group1_conditions and Group2_conditions
can execute in parallel.

F. Correction in Case of Open State Circuit Choice in
Model with 3 Parallel PWM Rectifiers

If the next state chosen in the function
choose_state_using_Groups is the open circuit
state No. 1 in certain parallel branch, non-zero ias current
flowing through this branch is physically impossible.

Transactions on Electrical Engineering, Vol. 3 (2014), No. 3 74

For this reason, it has to be corrected to zero. As a
consequence, we should recalculate also the voltage ud.
This is done using the reverse approach to the Euler
method for the state space numerical solution, i.e. from the
already computed new value of ud we subtract the
contribution of the appropriate ias current (the one that
should be zero). The use of the coefficient vector k
defined by (7) brings advantages to do that.

Be aware that values of coefficients k1, k2, k3 do not
correspond to the groups according to the sign of ias
current. However, their values depend on addition
of individual currents charging capacitor in the DC link
(see TABLE III).

TABLE III.
VALUES OF COEFFICIENTS ACCORDING TO THE STATE INDEX

Coefficient ki value
(i = 1, 2, 3)

State index of the
parallel branch i

Semiconductor
element conducting

2 D1&D4
1

6 T4&T1

3 D3&D2
-1

7 T2&T3

1 None

4 D3&T1 0

5 T2&D4

The final MATLAB implementation of the switch

manager for 3 parallel PWM rectifiers combines both
choosing of the next state and correction in the case
of open state circuit in one execution of the for loop. The
source code is provided below.

k_o = k; %Storing "old" vector value
used in state space numerical solution
for i=1:PPR %PPR = 3 (#PWM Rectifiers)

%Choosing of a new state index of
the i-th PWM Rectifier
index(i) =
choose_state_using_Groups(index(i),
ias(n,i),uas(n,i), ur(n-1,i), ul(n-
1,i), ud(n), pwm(n,i,:));
%Correction in case of state No. 1 –
open circuit.
if index(i) ==1

ias(n,i) = 0;
ud(n) = ud(n)-ko(i)/C1*h*ias(n-
1,i);

end ;
end ;

G. Final Implementation of 3 Parallel PWM Rectifiers
Model

We recapitulate the whole model of 3 parallel PWM
rectifiers implementation below.

In each simulation steps:
1. Numerical solution of the state equation

BuAxx +=& using Euler method.

2. Choosing new state using the state switching
manager and state matrices updating according to
the new state

3. Evaluating the outputs from the equation
DuCxy +=

The fact that the outputs are computed with already new
state matrices brings not only higher accuracy but also no
need of additional correction of the current id (see Fig. 2).
Because id is computed from already corrected currents ias
it is ensured that it will be non-negative.

IV. THE REAL-TIME MODEL

A. SW and HW resources

In order to run the model described above in real-time
we need to move on different platforms than PC: real-time
system and especially field-programmable gate array
(FPGA).

TABLE IV.
SW AND HW RESOURCES FROM NATIONAL INSTRUMENTS

Resource Usage

NI PXI-7854R Multifunction RIO
with Virtex-5 LX110 FPGA

Numerical model,
Inputs and outputs operation

NI PXIe-8133 1.73 GHz Quad-
Core Real-Time Controller

Communication with FPGA
model and with PC Interface

NI PXI-4110 Triple-Output
Programmable DC Power Supply

HW interfaces power supply

NI PXIe-1065 18-Slot 3U PXI
Express Chassis

Chassis,
Backplane communication

LabVIEW 2012 SP1 f3

LabVIEW Real-Time 12.0.0

LabVIEW FPGA 12.0.0

SW used by model
implementation

We make demand of the highest possible computational

repeat on the FPGA model. This should be at least 20
times higher than switching frequency (900 Hz in most
applications). However, there is only a limited number of
FPGA resources. We will describe our approach how to
fulfil these contradictory requirements by reaching the
highest model accuracy as possible later.

B. Numerical Format

For implementation of the computational VI on FPGA
in floating point the IP Xilinx CORE Generator Blocks
(see Fig. 7) were used. The advantages of this approach
are easy portability of the model for systems with (totally)
different parameters and high model precision. On the
other hand this approach increases significantly the FPGA
sources usage.

Not many operators in double precision can be placed
in our code to avoid FPGA resources overuse. In our case,
there were only two multipliers and two adders used. The
crucial part of our work is then to invent how to order the
input data and the intermediate results as the inputs of
individual operators to get the results in the shortest time.

This can be done using FPGA high-throughput 2-wire
protocol (see TABLE V).

Transactions on Electrical Engineering, Vol. 3 (2014), No. 3 75

TABLE V.
LOGICAL SIGNALS OF 2-WIRE HANDSHAKING PROTOCOL

LabVIEW
standard name

Xilinx name
[2]

Description

input valid operation_nd
Determinates if there is new
valid input data to process.

output valid rdy
Determinates if the received
result of operation is valid.

C. FPGA Model Performace Considerations

Because of the requirements to reduce the model space
and timing, we introduced some more or less substantial
simplifications.

First, we rewrite Euler method (9).

1 ()n n n nx x h Ax Bu+ = + + . (9)

We can save 4 multiplications for evaluating xn+1, when
we use the multiplied matrices hA and hB instead of the
matrices A and B on FPGA The equation (9) will be
transformed into shape:

1n n n nx x hAx hBu+ = + + . (10)

Fig. 7: Using of Xilinx Floating-Point Operator to multiply 2 numbers

in double precision on FPGA

Substantially significant resources and time savings can

be reached using the sparse matrices concept. In general,
all matrices hA, hB, C and D have together 16 + 24 + 40 +
60 = 140 elements. However, there are only 52 elements
which can be non-zero in some combination of individual
states (see TABLE VI). Only these non-zero elements are
involved in the computation. We only have to keep in
mind the sparse matrices structure (see TABLE VI) by
model implementation.

TABLE VI.
COORDINATE-WISE REPRESENTATION OF SPARSE MATRICES

Row index of non-zero elements
Matrix

Column indexes of non-zero elements

1 1 2 2 3 3 4 4 4
hA

1 4 2 4 3 4 1 2 3
9

1 1 1 2 2 2 3 3 3 4
hB

1 5 6 2 5 6 3 5 6 4
10

C 1 2 3 3 4 5 6 6 7 8 9 9 10 10 10 15

4 1 1 4 4 2 2 4 4 3 3 4 1 2 3

1 1 1 3 3 3 4 4 4 6 6 6 7 7 7 9 9 9
D

1 5 6 1 5 6 2 5 6 2 5 6 3 5 6 3 5 6
18

The numerical solver virtual instrument (VI) solving

one simulation step contains 3 parallel computational
threads, switch state manager VI and building matrices VI
placed in single cycle timed loop (SCTL).

The main FPGA VI consists of the solver loop, digital
inputs (PWM) processing loop and ten times slower
analog output generation loop and loop which sends data
to the RT controller (from where they are forwarded to
PC). The compiled code of this main VI consumes almost
all FPGA resources (see TABLE VII).

TABLE VII.
DEVICE UTILIZATION OF COMPILED MAIN FPGA VI

Total Slices 91.9 % (15880 out of 17280)

Slice Registers 68.2 % (47166 out of 69120)

Slice LUTs 66.5 % (45937 out of 69120)

DSP48s 71.9 % (46 out of 64)

Block RAMs 7.8 % (10 out of 128)

Sparse matrices usage, involving multiplication with

simulation step h and parallel executions decrease the
number of 40 MHz SCTL executions down to 182. By
code benchmarking we discovered that due to the
overhead whole loop in main FPGA VI is running with
tact of 208 ticks of the 40 MHz clock. To ensure that the
simulation will be actually running in real-time we
decided to choose simulation step h = 6.25 µs,
corresponding to 250 ticks of the 40 MHz clock.

D. Communication

The model receives the PWM pulses from the
electronic control unit (ECU) via optical-electrical
converter and digital inputs of FPGA.

The output analog data are adjusted and generated in
slower output generation loop and provided using SW and
HW interface to ECU (see Fig. 8).

Besides, the FPGA model communicates with
an application on PXIe-8133 RT controller. This
communication is provided by two DMA FIFOs. Host-To-
Target FIFO sends input quantities, i.e. secondary
voltages uas and current consumption i l. All computed
quantities are sent back using Target-To-Host FIFO to RT
target application. However, this application only sends
data forward via Ethernet to PC. In PC, the received data
are presented and also could be logged.

V. MODEL RESULTS

A. Model validation

We made a simple test to validate the model of one
PWM rectifier. The input data for this testing was
sinusoidal secondary voltage uas (of the frequency 50 Hz
and amplitude 250 V) and approximately constant load
current i l of 6.65 A. These quantities were measured by an
experiment with the laboratory pulse rectifier.

Transactions on Electrical Engineering, Vol. 3 (2014), No. 3 76

The results of the RT model of one pulse rectifier with
input data described above are shown in Fig. 10 and Fig.
12. This simulation results were compared with the real
measured data to prove that the model behavior
corresponds to the behavior of a real device.

B. Rectifiers offset testing

The data sent from model into PC are sampled with
16 kHz. Therefore, we can make the spectral analysis
theoretically up to 8 kHz and use the model for testing
 electromagnetic compatibility of device by different
configurations.

Primary current spectra are shown in Fig. 11 and Fig.
13. We can see that the cluster of spectral lines nearby
frequency 1600 Hz can be eliminated by the offset control
of 2 parallel PWM rectifiers.

Fig. 8: Communication diagram of real-time model

Fig. 9: Off-line graph of transition into energy recovery state from the diagnostic environment DISMON. Primary voltage uap in blue, primary current

ias in red and DC link voltage ud in black (all in computer units).

Fig. 10: Secondary current ias

Fig. 11: Spectrum of primary current iap by two PWM rectifiers running

Fig. 12: Bridge input voltage uav

Fig. 13: Spectrum of primary current iap by only one PWM rectifier

running

Transactions on Electrical Engineering, Vol. 3 (2014), No. 3 77

VI. CONCLUSION

This paper has presented the main issues we
encountered by the development of the real-time model of
3 parallel PWM rectifiers. This model allows us to
perform a substantial part of the control SW testing
without existence of a real device [3]. Moreover, such
tests with model can be easily rerun.

Therefore, it is planned to use this model to test the
control SW in all projects in our company in the future.

ACKNOWLEDGMENT

The whole research was made under the research
project Extension of Traction Drive Real-time Model (No.
65Z6210) in ŠKODA ELECTRIC, a.s. The publications
were financially supported by the Technology Agency of
Czech Republic (TACR) under the grant Competence
Center of Railway Vehicles (No. TE01020038).

REFERENCES
[1] J. Bauer, “Single-Phase Pulse Width Modulated Rectifier,” Acta

Polytechnica, vol. 48, no. 3/2008, Czech Technical University in
Prague, pp. 84-87.

[2] LogiCORE IP Floating-Point Operator v5.0. XILINX, 2011.
[3] M. Kopecký, J. Švanda, and M. Vlček, “Využití real-time simulací

při návrhu řízení trakčních pohonů,” XXXIII. konference o
elektrických pohonech, Pilsen, pp. 84-89, June 2013.

[4] M. Kopecký, V. Buba, “Příspěvek k řízení pulzního usměrňovače
lokomotivy 109E,” XXX. konference o elektrických pohonech,
Pilsen,, June 2007.

[5] M. Kopecký, M. Bednář, “Dosavadní zkušenosti s algoritmy řízení
4Q na lokomotivě 109E a jednotce 5Ev Litva,” XXXI. konference o
elektrických pohonech, Pilsen,, June 2007.

[6] J. Javůrek, Regulace moderních elektrických pohonů. Grada, 2003.
[7] E. Vitásek, Základy teorie numerických metod pro řešení

diferenciálních rovnic. Academica, 1994.
[8] J. Švanda, Using NI PXI Express and CompactRIO to Develop

a Hardware-in-the-Loop Tester for Electric Driver ECUs
of Locomotive, National Instrument, Solutions, Case Studies.
[Online]. Available: http://sine.ni.com/cs/app/doc/p/id/cs-15423
[Accessed: 8 April. 2014].

[9] High-Throughput LabVIEW FPGA Exercises. National
Instruments, 2012.

