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Abstract — The paper deals with the modelling and 

simulation of a six-degree-of-freedom (6DOF) motion 

platform with permanent magnet linear actuators. The 

notion and structure of a 6DOF platform (a.k.a. Stewart 

platform) is well known. The main aim of this paper is to 

find and describe a suitable solution for applications 

requiring high dynamics and position accuracy. For this 

reason, permanent magnet linear actuators, characterized 

by their high dynamics and accuracy, have been used – 

despite their still considerable (albeit gradually decreasing) 

price tag per unit of power. Furthermore this paper 

develops a mathematical model to be later employed for the 
scaling and design of the platform controls. 
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I. INTRODUCTION 

Motion platforms with six degrees of freedom were 
originally designed for use in aircraft simulators [5]. 
However, the system soon found many applications in 
other industries, such as automated production or testing, 
the latter area being also the main motivation for this 
study. 

The platform is comprised of six linear actuators 
arranged in a parallel kinematic structure. Different 
platform types employ different linear actuators, with the 
oldest ones featuring hydraulic cylinders. Gradually, 
hydraulic solutions started to be replaced by 
electromechanical actuators [6]. However, another 
approach is imminent, following the recent breakthroughs 
in the area of permanent magnet electric drives, as purely 
electric linear actuators now start to offer a fully worked 
out alternative to the hydraulic or electromechanical 
solutions. The main benefit of electric actuators is a much 
higher dynamic range, allowing systems based on this 
method to be used in a wider variety of applications.  

Wind tunnel analyses and measurements are performed 
by all airborne research organisations. A new motion 
platform, intended for aerodynamic process measurements 
and determination of dynamic parameters, is currently 
being developed by the CIDAM (Centre for Intelligent 
Drives and Advanced Machine Control) competence 
centre with the support of the Technology Agency of the 
Czech Republic (TACR). With the new platform 
researchers will be able to execute certain limited 
manoeuvres and test the aircraft control algorithms 
directly in a wind tunnel. More details of the plans using 
the platform during wind tunnel testing are available in 
[3]. 

The following paragraphs provide a description of the 
process how the mathematical model of the 6DOF motion 

platform with permanent magnet linear actuators was 
developed. In doing so, great attention was paid in 
particular to the planned purpose of the system, i.e. 
kinematic range and actuator output sizing as well as 
control design. In addition, simulation for a given set of 
parameters is described at the end of this paper. 

 

A schematic drawing of the mechanism described in this 

paper is provided in Figure 1. 

 
Fig. 1: Motion Platform with Six Degrees of Freedom Driven by Linear 

Actuators 

 

Given the properties and requirements of permanent 
magnet linear motors a different linear actuator design 
was used in this project. Unlike hydraulic or 
electromechanical systems with flexible actuator arm 
lengths, the permanent magnet electric actuators used in 
this motion platform feature fixed-length arms. To reach 
the required position the arm bottom joint slides along a 
rail fitted with permanent magnets. 

II. INVERSE KINEMATIC TRANSFORMATION 

In order to describe the relationships of the inverse 
kinematic transformation (i.e. transformation from the 
position of the platform movable frame to the positions of 
individual actuators), let us first define the following 
symbols and expressions: 

O1 is the coordinate system of the movable frame, 
which is capable to move freely (with six 
degrees of freedom) in relation to the fixed 
frame. 

O2 is the coordinate system of the fixed frame. 

Oα is the coordinate system of an actuator, defined 
by means of the vectors u, v, w (see below). 
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P1
1j is the actuator joint in the movable frame, 

expressed in the coordinates of the movable 
frame,        . 

P0
0j is the actuator joint in the fixed frame, expressed 

in the coordinates of the fixed frame,   
     . 

ΔVj is the displacement of the linear motor,   
     .. 

T is the transformation matrix of points in the 
coordinate system of the movable frame to the 
coordinate system of the fixed frame. 

   

                          
                          
           

  
  
  

     

  

ψ, ϑ, φ are the rotation angles of the movable frame 
along the Z, Y and X axes in relation to the 
fixed frame. The same order is used also for the 
transformation matrix. 

Δx, 
Δy, Δz 

Is the displacement of the movable frame in 
relation to the fixed frame. 

 

Basic kinematic parameters: 

r1, r0 Is the radius of the circumscribed circle of the 
movable (r1) and fixed (r0) frames. 

f1, f0 Is the distance of the joints at the edge of the 
movable (f1) and fixed (f0) frames.  

L Is the length of the actuator arm. 

 

Using the above parameters, the points P1
11 and P1

12 can 
be defined by the following expressions: 
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The remaining points, i.e.    
         , can be 

defined by means of a +120 ° or -120 ° rotation, i.e. 
multiplication by the following rotation matrix: 
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The very same approach can be used also when 
defining the points of the fixed frame, i.e.    

         . 

If the position of the moving frame in relation to the 
fixed frame is known the following expression holds true 
(assuming the points are given in homogenous coordinates 
= addition of a fourth coordinate of 1): 

    
      

  (3) 

Let us now define the coordinate system of the actuator, 
where the X axis runs in the direction of the linear motor 
motion and can be defined (for actuator 1) by the vector: 

         
   

     
 

    
     

  
 (4) 

The Y axis is perpendicular to the X axis and the 
actuator arm is located in the XY plane. The following 

expression holds true for the vector in the direction of the 
actuator arm: 

   
            

     
      

     
  (5) 

The vector perpendicular to X can be determined by 
means of orthogonalization: 

   
         

                  (6) 

          
                     

         (7) 

As the last step the orthogonal vector has to be 
normalised: 

         
  

      

   
       

 (8) 

The Z axis is perpendicular to the XY plane. The vector 
defining this axis can be obtained by means of the vector 
product: 

                         (9) 

The transformation matrix from the coordinate system 
of the actuator to the coordinate system of the fixed frame 
can be expressed as: 

     
                         

   
 

     
  (10) 

The inverse transformation can be written by inverting 
the foregoing transformation matrix: 

   
    

  
    

    
 

     
  (11) 

A vector diagram of the whole calculation is provided 
in Figure 2 below. 

 
Fig. 2: Vector analysis of the linear motor displacement calculation  

 

Using the above transformations, the displacement of 
the linear motor with respect to a given position of the 
movable frame can be written as: 

    
    

      
  (12) 

        
            

     (13) 

 

III. PERMANENT MAGNET SYNCHRONOUS LINEAR MOTOR 

Permanent magnet synchronous motors (PMSMs) 
belong to the most recent motor generations, finding use 
especially in applications requiring accurate position and 
speed servo-control (such as industrial robots). Unlike 
other electric motors, PMSMs can be easily arranged in a 
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linear shape. This feature will be utilized in the 
development of the mathematical model. 

The mathematical model of a linear motor can be 
derived from the properties of typical rotational motors – 
all what one has to do is to “cut and unroll” the engine in 
one’s mind [4]. All properties of the mathematical model 
of a rotational motor can be recalculated to a linear form if 
the radius of the “unrolled” rotational motor is known. 
The radius can be written as: 

           
  

 
, (14) 

where r is the desired radius, p the number of pole pairs 
and τ the pole pitch. 

Rotational electric machines are typically analysed in a 
suitable coordinate system rotating synchronously with 
the selected quantity. In this way, the examined AC 
quantities can be transformed to the corresponding DC 
quantities. A system rotating with a synchronous speed 
seems to be best suited for synchronous machines. In 
technical literature, this transformation is known as the d-
q transform, or Park’s transformation. 

The currents can be transformed to the d-q system by 
means of a gradual α-β transformation (Clarke’s 
transformation) to the stationary orthogonal system: 
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and subsequently to the rotating d-q system: 

  
  
  

   
          

           
  

  
  

  (16) 

The mathematical model has been determined under the 
following assumptions: 

• The system is powered by a three-phase 
symmetrical power source with harmonic 
voltages. 

• All phases have the same resistances and 
inductances. 

• The magnetization characteristic is linear. 

• Iron losses are not considered. 

The following expressions are applied to the different 
stator winding phases: 
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where Rs is the stator winding resistance and ψa, ψb and ψc 
are the magnetic fluxes in the form: 

                    (20) 
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   (22) 

In the above equation, Ls is the stator winding 
inductance and ψM the rotor magnetic flux, rotating with 
respect to the stator with the speed ωe. 

The final equations of the electrical part of the motor 
can be obtained by means of a d-q transformation of the 
above formulas: 

           
 

  
          (23) 

           
 

  
               (24) 

The foregoing set of equations can be completed by the 
equation of the electromechanical torque, which can be 
derived using the law of conservation of energy, assuming 
mechanical losses and iron losses are not considered. 
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Now, the radius expression determined earlier can be 
used and the above model “unrolled” into linear form. 
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The linear motor equations can be obtained by 
substituting into the rotation motor equations (23), (24) 
and (26): 
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where KF is the force constant, v the motor mechanical 

speed (   
 ) and F the acting force. 

In the derived equations, the current component id 
generates a magnetic flux inverse to the magnetic flux 
generated by the permanent magnets. In practice, the 
value of this current component is maintained as zero by 
means of independent vector control. Assuming that 
id = 0, the foregoing equations can be further simplified 
without any impact on the model suitability for the design 
and testing of the motion platform. Following this step, 
the resulting synchronous linear motor differential 
equation can be written as: 

 
 

  
    

  

  
   

 

  
   

 

 

  

  
  (32) 

        (33) 

IV. MATHEMATICAL MODEL OF THE PARALLEL 

MECHANISM 

The analytical expression of the dynamic behaviour of 
the parallel mechanism is highly complex, as the equation 
of motion cannot be obtained without forward kinematic 
transformation, an exceedingly complicated operation for 
this mechanism type. In fact, no solution of this problem 
has been found yet for the Stewart platform [2]. 

The equation of motion has the following general form 
[6]: 

        
  

 

 

     

    
    

 
               (34) 

In this expression, F is the acting force of the linear 
motor according to expression (33), ΔVj the displacement 
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of the linear motor according to expression (13), B the 
viscous friction coefficient, g the gravitational 
acceleration and mred the reduced mass of the given 
actuator load. Generally, this mass depends on the 
position of the platform and therefore cannot be 
determined without forward kinematic transformation. 

                  (35) 

A mathematical model was created in the MATLAB/ 
Simulink/SimMechanics environment for simulation 
purposes to provide numerical solutions of the forward 
kinematic transformation (Figure 3). 

 
Fig. 3: Mathematical Model of the Mechanism in the 

MATLAB/Simulink/SimMechanics Environment. 

 

In addition, the simulation model is planned to be used 
also for the control algorithm design and testing. For this 
purpose, the model can be linearized, assuming that the 
total load mass mload is divided approximately evenly 
between individual actuators. In such a scenario, the 
following expression holds true: 

            
     

 
 (36) 

Under these simplified conditions, the equation of 
motion for an actuator can be expressed in the following 
linear differential matrix form, which is suitable for 
control algorithm designs and analyses. The control 
algorithm must be robust enough with respect to the mred 
variation expressed by formula (35). 
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V. CONTROL SYSTEM 

As the most frequent drive control method, standard 
cascading PI control (current, speed, position) has been 
used for the simulations described below – see Figure 4. 
Various newer control methods could, in theory, be used 
and analysed as well, but the associated control quality 
improvements remain questionable in the light of the 
increased computing requirements and control system 
price tag. A more detailed analysis of the synchronous 
motor control impacts featuring modern control methods 
such as MPC (Model Predictive Control) is provided in 
[1]; the study shows, both in simulations and practical 
experiments, that the results are virtually the same for both 

methods. Modern control methods may be much more 
useful in scenarios where different types of drive 
constraints have to be considered, which are difficult to 
implement by means of the cascade PI control. 

 
Fig. 4: Control System 

 

 

VI. SIMULATION RESULTS 

The derived simulation model was implemented in the 
MATLAB/Simulink environment. A general overview of 
the parameters used in the simulation is provided in 
Table 1 below. 

TABLE I.  
MODEL PARAMETERS USED DURING SIMULATION 

Parameter Value Unit 

Rs 5.7 Ω 

Ls 40 mH 

KF 145.5 N/A 

mload 150 kg 

B* 0 kg.s-1 

r0 0.5 m 

r1 0.5 m 

f0 0.05 m 

f1 0.05 m 

* Mechanical losses were not taken into consideration 

in the initial simulation. 
 

The sinusoidal shapes of the platform position curves 
(i.e. the positions of the movable frame in relation to the 
fixed frame) were used as the model inputs. A summary 
overview of the simulation results is provided in Figure 6 
below.  

So far, it has not been possible to verify the simulation 
results by actual measurements, as the platform does not 
exist yet. As explained at the beginning of this paper, the 
purpose of the mathematical and simulation model is to 
lay the foundations for the subsequent design and sizing of 
the mechanism and its control system. The parameters of 
the linear motor were taken over from the manufacturer’s 
catalogue [8]. The curves in the simulation chart 
correspond with the expected values.  

An online visualisation of the simulation is available 
via YouTube at [7]. 

The main motivation for the development of a motion 
platform with linear motors is the overall increase of 
dynamics, thereby widening the application spectrum to 
the field of dynamic testing. Fig. 5 compares the measured 
dynamic characteristics of the previous solutions based on 
hydraulic and electromechanical actuators with the 
expected (simulated) dynamic characteristics of the new 
solution based on linear motors. All compared types of 
actuators have similar power characteristics. As shown in 
the figure the new solution has much higher (20x) 
dynamics in contrast to the previous solutions. 
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Fig. 5: Frequency characteristics 

 

VII. CONCLUSION 

The paper provides a description of the modelling and 
simulation of a 6DOF motion platform actuated by 
permanent magnet linear motors. It introduces a detailed 
mathematical model and presents the results of initial 
simulations for a given set of parameters. The model 
described here will be employed to design an actual 
mechanism to be later used for aerodynamic parameter 
measurements in a wind tunnel. 
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Fig. 6: Simulation Results 
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