
1 Introduction
A wide range of applications use lenses with a wide angle

of view (WFC, UWFC) for sky monitoring. Detection of new
objects e.g. novae, supernovae and AGN (Active Galactic
Nuclei) is a well known application in which these images are
analysed. All-sky imaging (monitoring) based on so-called
“fish-eye” lenses is also used in some applications.

This paper deals with scientific (astronomical) image data
processing. Real image data from the BOOTES experiment
and from double-station video observation of meteors is
analyzed. BOOTES is a system for monitoring the optical
transient of GRB (Gamma Ray Bursts). The main goal of
double-station video observation of meteors to acquire and
analyse video records of meteors. The images from these
systems contain survey data with huge numbers of objects of
small size. BOOTES is an automatic robotic system located in
southern Spain. It is equipped with a set of telescopes and
CCD (Charged-Couple Device) cameras, which are fitted with
lenses of various focal lengths. Each camera is used for a dif-
ferent task in monitoring the OT (optical transient) of the
GRB and AGN. In the following text, we deal with image data
acquired from the UWFC optical system. The second applica-
tion is double-station video observation of meteors in the
Czech Republic. Observation using a double camera system
enables us to determine the trajectory of meteors in the
earth’s atmosphere. UWFC is also used in this system. High
quality of the imaging system is therefore required.

UWFC image data analysis is very difficult in general.
There are many different kinds of optical aberrations and
distortions in these systems. Moreover, the objects in ultra
wide-field images are very small (a few pixels per object
dimension). Optical aberrations have their greatest impact
toward the margins of the FOV (Field of View), it means that
aberration error growing with increasing angular distance
from optical axis of the system. These aberrations distort
the PSF of the optical system and rapidly reduce the accu-

racy of the astrometry measurements. Optical aberrations are
dependent on three-dimensional coordinates. This relation
affects the transfer characteristics of optical systems and
makes them spatially variant. The influence of spatially vari-
ant optical aberrations on the transfer function of optical
imaging systems is outlined in this paper.

2 Transfer characteristics of optical
imaging systems
The description of transfer characteristics (mainly PSF) of

optical imaging system is presented in the following section.
To specify the properties of the lens optical system, we adopt
the point of view that all optical elements are lumped into a
“black box”. Referring to Fig. 1, the terminals of this black box
consist of the planes containing the entrance and exit pupils
[2].

2.1 Point Spread Function

The smallest detail that the imaging system can produce
is determined by its impulse response h( , )� � . The impulse
response, referred to in optical systems as the point spread
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Fig. 1: Generalized model of an optical imaging system



function (PSF), describes spatial distribution of the illumina-
tion in the image plane, when the point source in object plane
is used. PSF is actually the response of the optical imaging sys-
tem to the two dimensional Dirac impulse (see Fig. 2).

3 Effects of aberrations on PSF
Optical systems with all aberrations compensated are

known as diffraction limited system. The influence of aberra-
tions on image quality can be expressed as the wavefront error
at the exit pupil, and their effects on the transfer characteris-
tics can be expressed as the changes in the PSF size and shape.
When an imaging system is diffraction limited, the PSF con-
sists of the Fraunhofer diffraction pattern of the exit pupil [2].
In that case, we consider the departures of the exit-pupil
wavefront from ideal spherical form.

3.1 Shift invariant PSF modeling
The relation between the object and image of an LSI opti-

cal system can be expressed by the convolution in the spatial
domain (the object irradiance distribution f ( , )� � is convolved
with the impulse response h u v( , )) [5]. The PSF of the LSI op-
tical imaging system can be expressed as
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where p x y( , ) defines the shape, size and transmission of the
exit pupil, and � �exp ( ( , ))�i W x y2� � accounts for the phase
deviation of the wavefront from a reference sphere. Fig. 3
shows the PSF of diffraction limited optical system. An exam-
ple of coma aberration (one of the basic optical aberration)
[1, 3] influence to PSF is presented in Fig. 4.

3.2 Shift variant PSF modeling
When the impulse response of the optical imaging system

depends on the coordinates of the object ( , )� � , we speak
about Linear Shift Variant (LSV) systems. If we consider the
LSV system, we cannot use convolution to express the relation
between object and image. In order to compute PSF we have
to use the diffraction integral [1, 3, 4]. PSF can then be ex-
pressed as [6, 10]
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Fig. 5 shows real astronomical data, which was taken with-
in the double-station observation project. This program is
currently running at the Ondřejov Observatory. A stellar ob-
ject profile [8, 9] depending on the image position is also
demonstrated in Fig. 5.

4 Model of the spatially variant
imaging system
Astrometric measurements are often limited by variations

in PSF shape and size over the image. These variations in PSF
structure occur especially in UWFC systems, because of the
amount of aberrations. Optical aberrations increase toward
the margins, as mentioned above. The principal difficulty in
spatially variant (SV) systems is that Fourier approaches can
no longer be used for restorations (deconvolutions) of the
original image [5, 7].

Let us consider the SV optical system distorting only by
coma aberration. If we want to use Fourier methods for the
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Fig. 2: Two dimensional impulse response of the optical imaging
system – i.e. point spread function (PSF)

Fig. 3: PSF of a diffraction limited (aberration free) system

Fig. 4: PSF distorted with coma aberration



deconvolution process, we need to split the original image.
The transfer characteristics of each part (so called isoplanatic
patch) are described by a unique PSF. This system is called a
partially space invariant system, and we use it in our experi-
ments (see Fig. 6).

Such a system has parametric PSF – for each value of a pa-
rameter (in our case it is the coordinate of the object in the

object plane) the PSF takes a different size and shape accord-
ing to the aberrations.

The wavefront aberration function for the SV optical sys-
tem can be described as
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( , )� 	 is the RMS wavefront error for aberration
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m and for object coordinate ( , )� 	 .

Use of the partially space invariant system enables us to
describe the transfer characteristics by Fourier methods. The
PSF of this system can then be described as
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where ( , )� 	 is the polar coordinate on the object plane. So we
obtain a number of PSFs, one for each part. Now, we can also
use the Fourier approach for image deconvolution.
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Fig. 5: Input image data from the system at the Ondřejov base.
Demonstration of the influence of aberrations at the edge
and in the centre of an image.



The optical system is divided into 40 spatially invariant
parts in our experiments. Three deconvolution algorithms [8,
9] – Wiener, Lucy-Richardson and Blind -have been used for
restoring the original image (see Fig. 7 and 8).

The Wiener deconvolution algorithm gives inaccurate re-
sults. This method would need finer divisions. The Lucy-
-Richardson method gives the best results. The results are
influenced by the setting of the weighting function of each
spatially invariant part.

5 Conclusions
Optical aberration models for LSI, LSV and partially in-

variant systems have been presented in this paper. These
models are based on the Seidel and Zernike approximating
polynomials. We can commonly use these approaches for
modeling the WFC and UWFC of the BOOTES experiment
and also for double-station video observation of meteors. The
influences of coma aberration on astrometric measurement
precision have been shown. The effect of optical aberrations
and spatial variations on the transfer function (PSF) of optical
imaging systems have been described. The results of various
deconvolution algorithms have been demonstrated.

The goal of our future work is to find the PSF model of
high order optical aberrations for real SV (partially space in-
variant system) and to remove aberrations from the image. It
will be necessary to find sufficient splitting of the spatial vari-
ant system, and to find a proper deconvolution method for
removing the aberrations. This approach will also help to
improve the precision of astronomic measurements around
the optical axis and on the edges of FOV (far from the optical
axis).
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Fig. 8: Restored images: a) Wiener deconvolution. b) Lucy – Rich-
ardson deconvolution. c) Blind deconvolution
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