
Acta Polytechnica Vol. 52 No. 5/2012

A Task-driven Grammar Refactoring Algorithm

Ivan Halupka, Ján Kollár, Emília Pietriková

Dept. of Computers and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic

Corresponding author: ivan.halupka@tuke.sk

Abstract
This paper presents our proposal and the implementation of an algorithm for automated refactoring of context-free
grammars. Rather than operating under some domain-specific task, in our approach refactoring is perfomed on the basis
of a refactoring task defined by its user. The algorithm and the corresponding refactoring system are called mARTINICA.
mARTINICA is able to refactor grammars of arbitrary size and structural complexity. However, the computation time
needed to perform a refactoring task with the desired outcome is highly dependent on the size of the grammar. Until now,
we have successfully performed refactoring tasks on small and medium-size grammars of Pascal-like languages and parts
of the Algol-60 programming language grammar. This paper also briefly introduces the reader to processes occurring in
grammar refactoring, a method for describing desired properties that a refactored grammar should fulfill, and there is a
discussion of the overall significance of grammar refactoring.

Keywords: Grammar refactoring, evolutionary algorithm, refactoring processes, task-driven transformation.

1 Introduction
Our work in the field of automated grammar refactor-
ing derives from the fact that two or more equivalent
context-free grammars may have different forms. Al-
though two equivalent grammars generate the same
language, they do not necessarily share some other
specific properties that are measurable by grammar
metrics [2]. The form in which a context-free gram-
mar is written may have a strong impact on many
aspects of its future application. For example, it may
affect the general performance of the parser used to
recognize the language generated by the grammar
[12], or it may influence, and in many cases limit, our
choice of parser generator for use in implementing the
syntactic analyzer [12].
Since there is a close relation between the forms

in which a grammar is expressed and the purpose for
which the grammar is designed, different grammars
generating the same language become domain-specific
formalizations of language. The ability to transform
one grammar to another equivalent grammar there-
fore actually becomes the capability to shift between
domains of the possible application of grammars. Al-
though this ability makes each context-free grammar
more universal in the scope of its application, its prac-
tical advantages may easily be overwhelmed by the
difficulties that this approach can introduce. The
problem is that grammar refactoring is in many cases
a non-trivial task, and if done manually it is prone
to errors, especially in the case of larger grammars.
This is an issue, because there is in general no formal
way of proving that two context-free grammars gener-
ate the same language, since this problem cannot be
resolved.

In our work, we address this issue by proposing
an evolutionary algorithm for automated task-driven
grammar refactoring. The algorithm is called mAR-
TINICA. The main idea behind our algorithm is to
apply a sequence of simple transformation processes
to a chosen context-free grammar in order to produce
an equivalent grammar with the desired properties.
The current state of development of the algorithm
requires that the grammar’s production rules be ex-
pressed in BNF notation. These refactoring processes
are more closely discussed in section 4, while the
refactoring algorithm itself is discussed in section 6.
Desired properties of a grammar produced by the al-
gorithm are defined by an objective function that we
discuss in section 5. Finally, in section 7, we present
experimental results when our algorithm was used for
refactoring a context-free grammar.

2 Motivation

Grammarware engineering is an up-and-rising disci-
pline in software engineering, which aims to solve
many issues in grammar development, and promises
an overall rise in the quality of grammars that are pro-
duced, and in the productivity of their development
[5]. Grammar refactoring is a process that may occur
in many fields of grammarware engineering, e.g. gram-
mar recovery, evolution and customization [5]. In fact,
it is one of five core processes occurring in grammar
evolution, alongside grammar extension, restriction,
error correction and recovery [1]. The problem is that,
unlike program refactoring, which is well-established
practice, grammar refactoring is little understood and
little practised [5].

51



Acta Polytechnica Vol. 52 No. 5/2012

If there is a clear purpose for which the grammar is
being developed, its specification for an experienced
grammar engineer is usually not an issue. Problems
arise when a grammar is being developed for multi-
ple purposes [1], or when a grammar engineer lacks
knowledge about the future purpose of the grammar.
In the first case, the problem is usually solved by de-
veloping multiple grammars of one language [1]. This
need to develop multiple grammars could be replaced
by developing a single grammar generating a given
language and automatically refactoring it to another
form suited to satisfy certain requirements, thus in-
creasing the productivity of the grammar engineer.
In fact, this is one of the main objectives of our work
in the field of grammar refactoring.
In cases when the grammar engineer lacks knowl-

edge about some aspect of the future purpose of the
grammar, its final shape may not satisfy some of
the specific requirements, even if it generates cor-
rect language. In this case, the grammar must ei-
ther be refactored or be rewritten from scratch, thus
draining valuable resources. An automated or even
semi-automated way of refactoring the grammar could
produce significant savings in this redundant consump-
tion of resources. These are not the only two scenarios
where an efficient refactoring tool is needed. In fact,
an automated approach can be useful in all cases
where we have a grammar with a form that needs
to be changed while preserving the language that it
generates. In this case, we see two main domains
for applying our algorithms, i.e. adaptation of legacy
grammars, and grammar inference.
Parser generators and other implementation plat-

forms for context-free grammars develop over time.
Newly-established platforms and other tools operat-
ing with context-free grammars may require a form in
which the grammar should be expressed that differs
from the tools for the previous technological gener-
ation, or that operate with unequal efficiency over
the same grammar forms. Kent Beck states that pro-
grams have two kinds of value: what they can do for
today, and what they can do for tomorrow [4]. When
we take this principle into the account, we can say
that the ability to refactor a context-free grammar
in order to adjust it to the requirements of current
platforms is in fact the ability to add value to the
legacy formalization of the language.
Grammar inference is defined as recovering the

grammar from a set of positive and negative language
samples [11]. Grammar inference focuses on resolving
issues of over-generality and over-specialization of the
generated language [3], while the form of the grammar
is only a secondary concern. Grammar recovery tools
in general do not allow their users enough fine-grained
tuning options for recovering a grammar in the desired
form, making it in many cases difficult to comprehend,
and not useful until it has been refactored [6].

3 Related Work
We were able to find very little reported research in the
field of automated grammar refactoring. The small
amount of work that we did find is mostly concerned
with refactoring context-free grammars in order to
achieve some fixed domain-specific objective.
Kraft, Duffy and Malloy developed a semi-

automated grammar refactoring approach to replace
iterative production rules with left-recursive rules [6].
They present a three-step procedure consisting of
grammar metrics computation, metrics analysis in
order to identify candidate nonterminals, and trans-
formation of the candidate non-terminals. The first
and third step of this procedure are fully automated,
while the process of identifying non-terminals to be
transformed by replacing iteration with left recursion
is done manually. This approach is called metrics-
guided refactoring, since the grammar metrics are cal-
culated automatically, but the resulting values must
be interpreted by a human being, who uses them as
a basis for making decisions necessary for resuming
the refactoring procedure. The work also provides
an exemplary illustration of the benefits of grammar
refactoring, since left-recursive grammars are more
useful for some aspects of the application of a gram-
mar [8] and are also more useful to human users [9]
than iterative grammars.
However, the procedure for left-recursion removal

is a well-known practice in the field of compiler de-
sign. An algorithm for automated removal of direct
and indirect left recursion can be found in Louden
[10]. This approach is further extended by Lohman,
Riedewald and Stoy [9], who present a technique for
removing left-recursion in attribute grammars and
semantic preservation while executing this procedure.

4 Refactoring processes
In our approach, we use grammar refactoring pro-
cesses only as a tool for incremental grammar refac-
toring. Formally, a grammar refactoring process is
a function that takes some context-free grammar
G = (N,T,R, S) and uses it as a basis for creat-
ing a new grammar G′ = (N ′, T ′, R′, S′) equivalent
to grammar G. This function may also require some
additional arguments, known as process parameters.
We refer to each assignment of actual values to the
required process parameters of the specific grammar
refactoring process as refactoring process instantia-
tion, and an instance of this refactoring process is
referred to as a specific grammar refactoring process
with assigned actual values of its required process
parameters.

At this stage of development, we have experimented
with a base of eight grammar refactoring processes
(Unfold, Fold, Remove, Pack, Extend, Reduce, Split

52



Acta Polytechnica Vol. 52 No. 5/2012

and Nop), the first three of which have been adopted
from Ralf Läammel’s paper on grammar adaptation[7],
while the others are proposed by us. For the purpose
of better understanding what refactoring processes
really are, and how they work, in following subsections
we briefly introduce two of them, namely Pack and
Nop.

In our research, we tend to keep the process base as
small as possible, and we try to keep the refactoring
processes as universal as possible. This is mainly
because, as the refactoring process base grows, the
state space of possible solution grammars also grows,
and thus the size of the process base has a significant
impact on the calculation complexity of the algorithm.
However, lack of domain-specific refactoring processes
is compensated by the overall openness of the process
base, which means that it is a relatively trivial task
to expand it or reduce it. In fact, the only refactoring
process required by the algorithm, which must reside
at all times in the process base, is the Nop process.

4.1 Nop
Nop, or identical transformation, is a grammar refac-
toring process that transforms context-free grammar
G into the same context-free grammar G, or in other
words, it does not impose any changes on the gram-
mar.

4.2 Pack
Pack is a grammar refactoring process that creates
transformed grammar G′ on the basis of three process
parameters, i.e., a mandatory parameter called the
packed production rule (Pr), and optional parameters
initial package symbol (Ps) and package length (Pl).
These parameters must have the following properties:

Pr ∈ R,
Ps ∈ N ∧ Ps ≥ 0 ∧ Ps < rightSideLength(Pr),
Pl ∈ N ∧ Pl > 0 ∧ Pl ≤ rightSideLength(Pr)− Ps.

In cases when the initial package symbol is not defined,
we assume that Ps = 0. If the package length is not
defined, we define it as Pl = rightSideLength(Pr) −
Ps. Function rightSideLength returns the number
of symbols contained within the right side of the
production rule.

Pack replaces some sequence of symbols contained
within the right side of the packed production rule
with a new nonterminal, and creates a rule whose
left side is this new nonterminal and whose right side
is the sequence of symbols mentioned above. This
sequence of symbols is defined by the initial package
symbol and the package length. More precisely, it is
a sequence of Pl symbols starting from the symbol
whose position within the packed rule is Ps + 1.

5 Objective function
We adopt a somewhat modified understanding and
notation of objective functions from mathematical
optimization. In this case, the objective function
describes the properties of the context-free grammar
that we seek to achieve by refactoring. However, it
does not describe the way in which refactoring should
be performed, and the condition in which desired
properties of the grammar are achieved.
In our view, the objective function consists of two

parts: objective and state function. Our automated
refactoring algorithm works with only two kinds of
objectives, which are minimization and maximization
of a state function. We define a state function as an
arithmetic expression whose only variables are the
grammar metrics calculable for any context-free gram-
mar. As such, a state function is a tool for qualitative
comparison of two or more equivalent context-free
grammars.

Until now, we have experimented with some gram-
mar size metrics [2], e.g. number of non-terminals
(var) and number of production rules (prod). An ex-
ample of an objective function defining the refactoring
task to be performed on grammar G executable by
our algorithm is:

f(G) = minimize 2 ∗ var + prod. (1)

6 Refactoring algorithm
The main idea behind our grammar refactoring algo-
rithm is to apply a sequence of grammar refactoring
processes to a chosen context-free grammar, in order
to produce an equivalent grammar with a lower value
of the objective function, when the objective is mini-
mization, or a higher value of the objective function
when the objective is maximization. Since it is an
evolutionary algorithm, it also requires some other
input parameters, in addition to the initial grammar
and the objective function, in order to be executed.
The algorithm requires three other input parameters:
number of evolution cycles, population size and length
of life of a generation. The first two of these parame-
ters are characteristic for algorithms of similar type,
while the third parameter is our own.

As shown in Fig. 1, which presents a white-box view
of our algorithm, the central figure in mARTINICA is
an abstraction called population of grammars. In our
view, population of grammars is a set containing a
constant number of grammar population entities. Its
main property is that, after performing an arbitrary
step in our algorithm, the number of elements in
the population of grammars is always equal to the
population size.

Further, we define a grammar population entity as
an arranged triple of elements: post-grammar, process

53



Acta Polytechnica Vol. 52 No. 5/2012

chain of grammar generation, and difference in ob-
jective functions. A post-grammar is a context-free
grammar equivalent to the initial grammar. The pro-
cess chain for grammar generation is a sequence of
refactoring process instances that was used to cre-
ate the post-grammar from the corresponding post-
grammar of the previous generation. The number of
refactoring process instances in each grammar genera-
tion process chain is always equal to the length of life
of a generation. The difference in objective functions
is the difference between the values of the objective
function calculated for a post-grammar of the current
population and the corresponding post-grammar of
the previous population of grammars.

6.1 Refactoring process instantiation
All process instances occurring in our algorithm are
created automatically in one of three procedures,
which are referred to as random process creation, ran-
dom parameter creation, and identical process cre-
ation.

Random process creation creates instance of a ran-
dom refactoring process with random parameters.
The first step in this procedure randomly selects a
process from the base of grammar refactoring pro-
cesses. In this procedure, each grammar refactoring
process has the same probability of being selected.
The second step in the procedure defines concrete
process parameters for this process on the basis of
the grammar to which the process instance will be
applied. All possible combinations of process parame-
ters that respect the restrictions defined by a specific
refactoring process have the same probability of being
generated in this procedure.
Random parameter creation creates a process in-

stance originating from some other process instance.
The two mentioned process instances share the same
refactoring process, but their process parameters may
differ, since new process parameters have been created
in a procedure analogous to the second step of the
random process creation procedure. The only excep-
tion to this rule occurs when there is no acceptable
combination of process parameters for a given refactor-
ing process to be applicable to the given context-free
grammar. In this, the random parameter creation
procedure returns an instance of the Nop refactoring
process.

Identical process creation creates an instance of the
Nop grammar refactoring process.

6.2 Creating an Initial population
In the first phase of the Automated Refactoring Algo-
rithm, the initial population of the grammars is cre-
ated, and as such this phase is not repeated through-
out the algorithm.

Population of 
grammars

Initial population 
creation

Test grammars
creation

Selection

Refactoring
processes

Figure 1: White-box view of mARTINICA.

The first step in this phase is to create grammar
generation process chains for each grammar popula-
tion entity. All process instances of each process chain
created in this phase of the algorithm are created in
the random process creation procedure, except for
one, whose processes are all created in the identical
process creation procedure. The reason for this excep-
tion is to guarantee that the initial grammar will be
incorporated into the initial population of grammars.
Since the sequence of process instances contained in
the process chain must be applicable to the grammar
for which are they being generated, in exact order, we
must consider all changes to the grammar performed
by one refactoring process instance in order to be able
to generate the next process instance of the process
chain. We solve this issue by generating intermediate
grammars after each random process creation proce-
dure by applying this refactoring process instance to
the grammar for which the random refactoring pro-
cess instance is being generated. We then generate
the next random process instance of the process chain
on the basis of the intermediate grammar. In order
to better understand the idea behind this approach,
we provide an example of creating a process chain
consisting of three random refactoring processes for
the initial grammar. This example is shown in Fig. 2.

The second step in the first phase of the algorithm
creates corresponding post-grammars for each gram-
mar population entity by applying its process chain to
the initial grammar, and finally the third step calcu-
lates the difference of the objective function calculated
for the initial grammar and the post-grammar of the
corresponding grammar population entity.

54



Acta Polytechnica Vol. 52 No. 5/2012

Refactoring 
process instance 1

Refactoring 
process instance 2

Refactoring 
process instance 3

Initial grammar

Intermediate
grammar 1

Intermediate
grammar 2

Random process 
creation

Random process 
creation

Random process 
creation

Grammar 
transformation

Grammar 
transformation

Process chain

Figure 2: Creating a random process chain.

6.3 Creating test grammars

The second and third phase of the algorithm, called
test-grammar creation and selection, are repeated
in sequence for a number of evolution cycles. In
test-grammar creation, we create three test gram-
mar population entities for each grammar population
entity. These entities are called self-test grammar,
foreign-test grammar, and random-test grammar.

Self-test grammar is created on the basis of the cor-
responding grammar population entity and process
chain, generated on the basis of the process chain of
this entity. All refactoring process instances in the
newly generated process chain are created in the ran-
dom parameter creation procedure, and the algorithm
for creating them is analogous to the algorithm for cre-
ating a random process chain in the initial population
of the grammar creation phase. Self-test grammar is
therefore a grammar population entity containing a
grammar that was created on the basis of the same
refactoring processes as those on which original tested
grammar was created, but these processes may have
different process parameters.

Foreign-test grammar is created in a similar proce-
dure as for self-test grammar, with the exception that
the new population entity is not created on the basis
of a tested grammar process chain, but on the basis of
some other grammar population entity process chain.
This population entity is randomly selected from the
population of grammars.
Random-test grammar is created in a procedure

analogous to the procedure for creating a random
grammar population entity in the first phase of the al-
gorithm, with the exception that the random process
chain is not being generated for an initial grammar,
but for a grammar contained within the tested gram-
mar population entity.

Initial
grammar

Grammar
parser

Automated 
refactoring 
algorithm

Objective 
function 
evaluator

Evolution
monitor

Refactored
grammar

Refactoring
report

txt

pdf

txt

Objective
function

txt

Figure 3: mARTINICA system architecture.

6.4 Selection and evaluation
In the selection phase of the algorithm, we compare
the value of the objective function of each grammar
within the population of grammars with the values
of the objective function of the corresponding test
grammars, and we choose the grammar with the best
value of the objective function. This is the grammar
which will be incorporated in the next generation
of the population of grammars. When the chosen
grammar is the tested grammar no changes occur,
and the corresponding grammar population entity is
preserved in the population of grammars. Otherwise,
the tested grammar population entity is removed from
the population of grammars and is substituted by the
test grammar population entity with the best value
of the objective function.

The fourth and final phase of the algorithm is per-
formed after all evolution cycles have ended. In this
phase, we compare the values of the objective function
calculated for each grammar within the population
of grammars, and we choose the grammar with the
highest or lowest value, depending on our objective.
This is the solution grammar, and as such is the result
of automated refactoring.

7 Experimental results

7.1 mARTINICA implementation
In order to be able perform experiments and demon-
strate the correctness of our approach, we imple-
mented a grammar refactoring system in which mAR-
TINICA plays a central role. The entire system is
implemented in Java, and its architecture is shown in
Fig. 3.
The refactoring system takes the initial grammar

to be refactored and the objective function from two
different text files and, after refactoring has been
performed, it creates two files. The first of these is a

55



Acta Polytechnica Vol. 52 No. 5/2012

program ::= PROGRAM ident
BEGIN commandSequence END

commandSequence ::= command
COMMA commandSequence

commandSequence ::= command
command ::= assignement
command ::= declaration

assignement ::= variable ASSIGN expression
declaration ::= VAR ident TYPE type
expression ::= variable operation expression
expression ::= constant operation expression
expression ::= variable
expression ::= constant
operation ::= PLUS
operation ::= MINUS

type ::= INTEGER
type ::= REAL
ident ::= IDENT

variable ::= IDENT
constant ::= NUMBER

Table 1: Inital grammar.

text file containing the resulting grammar, and the
second is a pdf file containing the evolution report.

The core of the systems is divided into two coex-
isting entities: an automated refactoring algorithm,
and an objective function evaluator. The automated
refactoring algorithm contains the implementation of
the entire mARTINICA algorithm, the refactoring
process base and the interactive user interface for
obtaining the number of evolution cycles, the popula-
tion size and the length of life of the generation. The
initial grammar is taken from the text file, parsed by
the grammar parser, which creates a grammar model
on the basis of which the refactoring is done. The
objective function is parsed by the objective function
evaluator, which calculates the values of the objective
function for all grammars provided by the automated
refactoring algorithm. It does not provide an auto-
mated refactoring algorithm with a refactoring ob-
jective, since the algorithm always assumes that the
objective is minimization, and if this is false the objec-
tive function evaluator transforms the state function
so that it is equivalent to the native state function,
but with the objective of minimization.

The entire refactoring process is monitored by the
evolution monitor, which creates a report containing
some analytical data concerning the specific refactor-
ing process.

program ::= PROGRAM IDENT
BEGIN commandSequence END

commandSequence ::= command
COMMA commandSequence

commandSequence ::= command
command ::= IDENT ASSIGN expression
command ::= VAR IDENT TYPE REAL
command ::= VAR IDENT TYPE INTEGER
expression ::= IDENT PLUS expression
expression ::= IDENT MINUS expression
expression ::= NUMBER PLUS expression
expression ::= NUMBER MINUS expression
expression ::= IDENT
expression ::= NUMBER

Table 2: Refactored grammar.

7.2 Refactoring experiment
We experimented with a context-free grammar gen-
erating a simple assignment language. The grammar
itself contains 11 non-terminals, 13 terminals and 18
production rules, whose BNF notation is shown in
Tab. 1.

Symbols starting with a lowercase letter represent
nonterminals, while symbols starting with uppercase
letters represent terminals. The start symbol of the
grammar is a non-terminal program. In our experi-
ment, the refactoring task was described by an objec-
tive function from example (1). We iterated through
30 evolutionary cycles, with a population of 500 gram-
mar population entities, and the length of life of a
generation was set to 4. After refactoring had been
performed, we obtained the grammar shown in Tab. 2.
The value of the objective function evaluated for

the initial grammar was 40, while the value of the ob-
jective function evaluated for the refactored grammar
is 20, which means that mARTINICA managed to re-
duce the value of the objective function by 50%, and
thus fulfilled the refactoring task. The development
of the value of the objective function through the
evolutionary cycles is illustrated in Fig. 4. The upper
line illustrates the development of the average value
of the objective function in all grammars within the
population of grammars, while the lower line shows
the development of the value of the objective function
in the best grammar found within the population of
grammars.

8 Conclusion
In this paper, we have presented our algorithm and
software system for automated refactoring of context-
free grammars. The main advantage of the algorithm

56



Acta Polytechnica Vol. 52 No. 5/2012

Values of objective function through evolution

Minimal value of objective function Average value of objective function

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Evolutionary cycle

0

5

10

15

20

25

30

35

40

45

V
al

u
e 

o
f 

o
b

je
ct

iv
e 

fu
n

ct
io

n

Figure 4: Values of the objective function through
evolution.

is its relatively broad range of application, while its
main disadvantages are relatively high computational
complexity and slow propagation of positive changes
within the population of grammars. In future, we will
focus on resolving these issues and on expanding the
implemented system to make it applicable for other
aspects of grammar evolution, not only for refactoring.

Acknowledgements
The work presented in this paper was supported by
SRDA Project of Slovak-Slovenian Research and De-
velopment No. SK-SI-0003-10 “Language Patterns in
Domain-specific Languages Evolution”.

References
[1] T. L. Alves, J. Visser. A Case Study in Grammar

Engineering. In Proceedings of SLE’2008 (Eds. D.
Gašević, R. Lämmel and E. Wyk), pp. 285–304.
Springer-Verlag, Berlin-Heidelberg, 2009.

[2] J. Cervelle et al. On defining quality based gram-
mar metrics. In Proceedings of IMCSIT ’09.
International Multiconference (Eds. M. Ganzha
and M. Paprzycki), pp. 651–658. IEEE Computer
Society Press, Los Alamitos, 2009.

[3] A. D’ulizia, F. Ferri, P. Grifoni. A Learning
Algorithm for Multimodal Grammar Inference.
Systems, Man, and Cybernetics, Part B: Cyber-
netics 41(6):1495–1510, 2011.

[4] M. Fowler et al. Refactoring: improving the
design of existing code. Addison-Wesley, Boston,
1999.

[5] P. Klint, R. Läammel, C. Verhoef. Toward an
Engineering Discipline for Grammarware. Trans-
action on Software Engineering and Methodology
14(3):331–380, 2005.

[6] N. A. Kraft, E. B. Duffy, B. A. Malloy. Grammar
Recovery from Parse Trees and Metrics-Guided
Grammar Refactoring. Software Engineering
35(6):780–794, 2009.

[7] R. Lämmel. Grammar Adaptation. In FME 2001:
Formal Methods for Increasing Software Produc-
tivity (Eds. J. Oliveira and P. Zave), pp. 550–570.
Springer-Verlag, Berlin-Heidelberg, 2001.

[8] R. Läammel, C. Verhoef. Semi-Automatic Gram-
mar Recovery. Software: Practice and Experience
31(15):1395–1438, 2001.

[9] W. Lohmann, G. Riedewald, M. Stoy. Semantics-
preserving Migration of Semantic Rules During
Left Recursion Removal in Attribute Grammars.
Electron Notes Theor Comput Sci 110:133–148,
2004.

[10] K. C. Louden. Compiler Construction: Prin-
ciples and Practice. PWS Publishing, Boston,
1997.

[11] M. Mernik et al. Grammar inference algorithms
and applications in software engineering. In
Proceedings of ICAT 2009. XXII International
Symposium (Eds. A. Salihbegović, J. Velagić, H.
Šupić and A. Sadžak), pp. 14–20. IEEE Com-
puter Society Press, Los Alamitos, 2009.

[12] T. Mogensen. Basics of Compiler Design. Uni-
versity of Copenhagen, 2007.

57


