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Abstract. We discuss resonances for a nonrelativistic and spinless quantum particle confined to
a two- or three-dimensional Riemannian manifold to which a finite number of semiinfinite leads is
attached. Resolvent and scattering resonances are shown to coincide in this situation. Next we consider
the resonances together with embedded eigenvalues and ask about the high-energy asymptotics of such
a family. For the case when all the halflines are attached at a single point we prove that all resonances
are in the momentum plane confined to a strip parallel to the real axis, in contrast to the analogous
asymptotics in some metric quantum graphs; we illustrate this on several simple examples. On the
other hand, the resonance behaviour can be influenced by a magnetic field. We provide an example
of such a ‘hedgehog’ manifold at which a suitable Aharonov-Bohm flux leads to absence of any true
resonance, i.e. that corresponding to a pole outside the real axis.
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1. Introduction
A study of quantum systems the configuration space
of which is geometrically and topologically nontrivial
has proved to be a fruitful subject both theoretically
and practically. A lot of attention has been paid to
quantum graphs — a survey and a guide to further
reading can be found in [6, 14]. Together with this
other systems have been studied which one can re-
gard as a generalization of quantum graphs where
the ‘edges’ may have different dimensions; using the
theory of self-adjoint extensions one can construct
operator classes which serve as Hamiltonians of such
models [19].

One sometimes uses a pictorial term ‘hedgehog man-
ifold’ for a geometrical construct consisting of Rie-
mannian manifolds of dimension two or three together
with line segments attached to them. In this paper we
consider the simplest situation when we have a single
connected manifold to which a finite number of semiin-
finite leads are attached — one is especially interested
in transport in such a system. Particular models of
this type have been studied, e.g., in [7, 8, 18, 20, 25].
Again for the sake of simplicity we limit ourselves
mostly to the situation when there are no external
fields; the Hamiltonian will act as the negative second
derivative on the halflines representing the leads and
as Laplace-Beltrami operator on the manifold.
We have said that quantum motion on hedgehog

manifolds can be regarded as a generalization of quan-
tum graphs. It is therefore useful to compare simi-
larities and differences of the two cases, and we will

recall at appropriate places in the text how the claims
look when the Riemannian manifold is replaced by a
compact metric graph.

The first question one has to pose when resonances
are discussed is what is meant by this term1. The two
prominent instances are resolvent resonances identi-
fied with poles of the analytically continued resolvent
of the Hamiltonian and scattering resonances where
we look instead into the analytical structure of the
on-shell scattering operator. While the two often co-
incide, in general it may not be so; recall that the
former are the property of a single operator while the
latter refer to the pair of full and unperturbed Hamil-
tonians, and often also a third one, an identification
operator, which one uses if the two Hamiltonians act
on different Hilbert spaces [27].
The first question we will thus address deals with

the two resonance definitions for quantum motion on
hedgehog manifolds. Using an exterior complex scal-
ing we will show that in this case both notions coincide
and one is thus allowed to speak about resonances
without a further specification. The result is the same
as for quantum graphs [15, 16] and, needless to say,
in many other situations.
The next question to be addressed in this paper

concerns the high energy behaviour of the resonances

1Investigations of resonances in quantum systems have a
long history. For a survey of classical results see, e.g., Chap. 3
of [13]. There are also various newer results, in particular,
attention has been paid recently to perturbation of eigenvalues
near the threshold [12].
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which is, for this purpose, useful to count together
with the eigenvalues. Note that if a hedgehog manifold
with a finite number of junctions is compact having
finite line segments, its spectrum is purely discrete
and an easy estimate yields the spectral behaviour at
high energies. It follows the usual Weyl’s law [30], and
moreover, it is determined by the manifold component
with the highest dimension, that is, in our case, the
Riemannian manifold [24].

If, on the other hand, the leads are semiinfinite, the
essential spectrum covers the positive real axis. In
contrast to the usual Schrödinger operator theory, it
often contains embedded eigenvalues; this happens
typically when the Laplace-Beltrami operator which
is the manifold part of the Hamiltonian has an eigen-
function with zeros at the hedgehog junctions. Since
such eigenvalues are unstable — a geometrical per-
turbation turns them generically into resonances —
it is natural to count them together with the ‘true’
resonances; one then asks about the asymptotics of
the number of such singularities enclosed in the circle
of radius R in the momentum plane.
This question is made intriguing by the recent ob-

servation [10, 11] that in some quantum graphs the
asymptotics may not be of Weyl type. The reason
behind this effect is that symmetries, maybe not ap-
parent ones, may effectively diminish the graph size
making a part of it effectively belongs to a lead in-
stead. The mechanism uses the fact that all the edges
of a quantum graph are one-dimensional, and one
may expect that such a thing would not happen on
hedgehog manifolds where the particles are forced to
‘change dimension’ at the junctions. We are going to
give a partial confirmation of this conjecture by show-
ing that, in contrast to the quantum-graph case, the
resonances cannot be found at arbitrary distance from
the real axis in the momentum plane as long as the
leads are attached at a single point of the manifold.
The third and the last question addressed here

is again inspired by an observation about quantum
graphs. It has been noted that a magnetic field can
change the effective size of some quantum graphs with
a non-Weyl asymptotics [17]: if we follow the reso-
nance poles as functions of the field we observe that
at some field values they move to (imaginary) infinity
and the resonances disappear. On hedgehog manifolds
the situation is different, though a similar effect may
again occur; we will present a simple example of such
a system in which a suitable Aharonov-Bohm field
removes all the ‘true’ resonances, i.e. those with pole
position having nonzero imaginary part.

2. Description of the model
Let us first give a proper meaning to what we described
above as quantum motion on a hedgehog manifold;
doing so we generalize previously used definitions —
see, e.g. [7, 8, 18] — by allowing more than a single
semiinfinite lead be attached at a point of the mani-
fold. Consider a compact and connected Riemannian

Figure 1. Example of a hedgehog manifold

manifold Ω ∈ RN , N = 2, 3, endowed with metric grs.
The manifold may or may not have a boundary, in
the latter case we suppose that ∂Ω is smooth.

We denote by Γ the geometric object consisting of Ω
and a finite number nj of halflines attached at points
xj , j = 1, . . . , n belonging to a finite subset {xj} of
the interior of Ω — see Figure 1 — we will employ the
term hedgehog manifold, or simply manifold if there
is no danger of misunderstanding. By M =

∑
j nj we

denote the total number of the halflines. The Hilbert
space we are going to consider consists of direct sum
of the ‘component’ Hilbert spaces, in other words,
its elements are square integrable functions on every
component of Γ,

H = L2(Ω,√|g|dx)⊕ M⊕
i=1

L2(R(i)
+
)
,

where g stands for det(grs) and dx for Lebesque mea-
sure on RN .
Let H0 be the closure of the Laplace-Beltrami op-

erator2 −g−1/2∂r(g1/2grs∂s) with the domain consist-
ing of functions in C∞0 (Ω); if the boundary of Ω is
nonempty we require that they satisfy at it appro-
priate boundary conditions, either Neumann/Robin,
(∂n + γ)f |∂Ω = 0, or Dirichlet, f |∂Ω = 0. The domain
of H0 coincides with W 2,2(Ω) which, in particular,
means that f(x) makes sense for f ∈ D(H0) and
x ∈ Ω. The restriction H ′0 of H0 to the domain{
f ∈ D(H0) : f(xj) = 0, j = 1, . . . , n

}
is a symmet-

ric operator with deficiency indices (n, n), cf. [7, 8].
Furthermore, we denote by Hi the negative Laplacian
on L2(R(i)

+ ) referring to the i-th halfline and by H ′i
its restriction to functions which vanish together with
their first derivative at the halfline endpoint. Since
each H ′i has deficiency indices (1, 1), the direct sum
H ′ = H ′0 ⊕H ′1 ⊕ · · · ⊕H ′M is a symmetric operator
with deficiency indices (n+M,n+M).

The family of admissible Hamiltonians for quantum
motion on the hedgehog manifold Γ can be identi-
fied with the self-adjoint extensions of the operator
H ′. The procedure for constructing them using the

2As mentioned above, we make this assumption for the
sake of simplicity and most considerations below extend easily
to Schrödinger type operators −g−1/2∂r(g1/2grs∂s) + V (x)
provided the potential V is sufficiently regular.

417



P. Exner, J. Lipovský Acta Polytechnica

boundary-value theory was described in detail in [8].
It is a modification of the analogous result from the
quantum graph theory [23], and in a broader context
of a known general result [22]. All the extensions are
described by the coupling conditions

(U − I)Ψ + i(U + I)Ψ′ = 0, (1)

where U is an (n+M)× (n+M) unitary matrix, I
the corresponding unit matrix and

Ψ =
(
d1(f), . . . , dn(f), f1(0), . . . , fn(0)

)T
,

Ψ′ =
(
c1(f), . . . , cn(f), f ′1(0), . . . , f ′n(0)

)T
are the columns of (generalized) boundary values. The
first n entries correspond to the manifold part being
equal to the leading and next-to-leading terms of the
asymptotics of f(x) on Ω in the vicinity of xj , while
fi(0), f ′i(0) describe the limits of the wave function
and its first derivative on i-th halfline, respectively.
More precisely, according to Lemma 4 in [8], for f ∈
D(H∗0 ) the asymptotic expansion near xj has the form
f(x) = cj(f)F0(x, xj) + dj(f) +O(r(x, xj)), where

F0(x, xj) =
{
− q2(x,xj)

2π ln r(x, xj), N = 2
q3(x,xj)

4π
(
r(x, xj)

)−1
, N = 3

(2)

Here q2, q3 are continuous functions of x with
qi(xj , xj) = 1 and r(x, xj) denotes the geodetic dis-
tance between x and xj . Function F0 is the leading
term, independent of energy, of the Green function
asymptotics near xj , i.e.

G(x, xj ; k) = F0(x, xj) + F1(x, xj ; k) +R(x, xj ; k)

with the remainder term R(x, xj ; k) = O
(
r(x, xj)

)
.

The self-adjoint extension of H ′ determined by the
condition (1) will be denoted as HU ; we will drop the
subscript if the choice of U is either clear from the
context or not important.

Not all self-adjoint extensions, however, make sense
in general from the physics point of view. The reason
is that for n > 1 one finds among them such extensions
which would allow the particle living on Γ to hop from
one junction to another junction. We restrict our
attention in what follows to local couplings for which
such a situation cannot occur. They are described
by matrices which are block diagonal, so that such a
U does not connect disjoint junction points xj . The
coupling condition (1) is then a family of n conditions,
each referring to a particular xj and coupling the
corresponding (sub)columns Ψj and Ψ′j by means of
the respective block Uj of U .

Before proceeding further we will mention a useful
trick, known from quantum-graph theory [16], which
allows to study a compact scatterer with leads looking
at its ‘core’ alone replacing the leads by effective
coupling at the points xj which is a non-selfadjoint,
energy-dependent point interaction, namely(

Ũj(k)− I
)
dj(f) + i

(
Ũj(k) + I

)
cj(f) = 0, (3)

Ũj(k) = U1j − (1− k)U2j
[
(1− k)U4j

− (k + 1)I
]−1

U3j ,

where U1j denotes the top-left entry of Uj , U2j the
rest of the first row, U3j the rest of the first column
and U4j is nj ×nj part corresponding to the coupling
between the halflines attached to the manifold. This
can be easily checked using the standard argument
ascribed, in different fields, to different people such as
Schur, Feshbach, Grushin, etc.

3. Scattering and resolvent
resonances

The model described in the previous section provides
a natural framework for studying scattering on the
hedgehog manifold. The existence of scattering is
easy to establish because any Hamiltonian of the con-
sidered class differs from one with decoupled leads
by a finite-rank perturbation in the resolvent [27].
Finding the on-shell scattering matrix is computation-
ally slightly more complicated but simple in principle.
The solution of the sSchrödinger equation on the j-
th external lead with energy k2 can be expressed as
a linear combination of the incoming and outgoing
waves, aj(k)e−ikx + bj(k)eikx. The scattering matrix
then maps the vector of incoming wave amplitudes aj
into the vector of outgoing wave amplitudes bj .
We emphasize that our convention, which is nat-

ural in this context and analogous to the one used
in quantum-graph theory [26] differs from the one
employed when scattering on the real line is treated
[29], in that each lead is identified with the positive
real halfline. For the case of two leads, in particular,
it means that columns of the 2× 2 scattering matrix
are interchanged and we have

Lemma 3.1. The on-shell scattering matrix satisfies

S(k)−1 = S(−k) = S∗(k̄),

where star and bar denote the Hermitian and complex
conjugation, respectively.

Proof. The claim follows directly from the definition
of scattering matrix and from the properties of the
Schrödinger equation and its external solutions. Since
the potential is absent we infer that if f(k0, x) is a
solution of the Schrödinger equation for a given k, so
is f(−k0, x). This means that S(k) can be regarded
both as an operator mapping {aj(k)} to {bj(k)} and
as a map from {bj(−k)} to {aj(−k)}, i.e. as the
inverse of S(−k). In an similar way one can establish
the second identity.

Remark 3.2. If Ω is replaced by a compact metric
graph and the potential is again absent, the S-matrix
can be written as S(k) = −F (k)−1 ·F (−k) where the
M ×M matrix F (k) is an analogue of Jost function.
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In particular, S(k) is unitary for k ∈ R, however,
we will need it also for complex values of k. By a
scattering resonance we conventionally understand a
pole of the on-shell scattering matrix in the complex
plane, more precisely, the point at which some of its
entries have a pole singularity.

A resolvent resonance, on the other hand, is identi-
fied with a pole of the resolvent analytically continued
from the upper complex halfplane to a region of the
lower one. A convenient and efficient way of treating
resolvent resonances is the method of exterior complex
scaling based on the ideas of Aguilar, Baslev, Combes,
and Simon — cf. [2, 5, 28], for a recent application
to the case of quantum graphs see [11, 15, 16]). Res-
onances in this approach become eigenvalues of the
non-selfadjoint operator Hθ = UθHU−1

θ obtained by
scaling the Hamiltonian outside a compact region with
the scaling parameter taking a complex value eθ; if
Im θ is large enough, the rotated essential spectrum
reveals a part of the ‘unphysical’ sheet with the poles
being now true eigenvalues corresponding to square
integrable eigenfunctions.
In the present case we identify, by analogy with

the quantum-graph situation mentioned above, the
exterior part of Γ with the leads, and scale the
wave function at each them using the transformation
(Uθf)(x) = eθ/2f(eθx), which is, of course, unitary for
real θ, while for a complex θ it leads to the desired
rotation of the essential spectrum. To use it, we first
state a useful auxiliary result.

Lemma 3.3. Let H|Ω be the restriction of an ad-
missible Hamiltonian to Ω and suppose that f(·, k)
satisfies H|Ωf(x, k) = k2f(x, k) for k2 6∈ σ(H0), then
it can be written as a particular linear combination
of Green functions of H0, namely

f(x, k) =
n∑
j=1

cjG(x, xj ; k).

Proof. The claim is a straightforward generalization
of Lemma 2.2 in [25] to the situation where n > 2
and more general couplings are imposed at the junc-
tions. Suppose that k is not an eigenvalue of H0. The
Green functions with one argument fixed at differ-
ent points xj are clearly linearly independent, hence
DomH ′∗ = W 2,2(Ω) ⊕ (Span{G(x, xj ; k)}nj=1), and
without loss of generality one can write f(x, k) =∑n

j=1 cjG(x, xj ; k)+g(x) with g ∈W 2,2(Ω). However,
then we would have H|Ωg(x) = H0g(x) = k2g(x) for
x 6= xj , and since k2 6∈ σ(H0) and g ∈ W 2,2(Ω) by
assumption, it follows that g = 0.

Theorem 3.4. In the described setting, the hedgehog
system has a scattering resonance at k0 with Im k0 < 0
and k2

0 6∈ R iff there is a resolvent resonance at k0.
Algebraic multiplicities of the resonances defined in
both ways coincide.

Proof. Consider first the scattering resonances. The
starting point is the generalized eigenfunction describ-
ing the scattering at energy k2 and its analytical
continuation to the lower complex halfplane. From
the previous lemma we know that for k2 6∈ σ(H0) the
restriction of the appropriate Schrödinger equation
solution to the manifold is a linear combination of at
most n Green functions; we denote the corresponding
vector of coefficients by c. The relation between these
coefficients and amplitudes of the outgoing and incom-
ing wave is given by (1). Using a as a shortcut for
the vector of the amplitudes of the incoming waves,(
a1(k), . . . , aM (k)

)T, and similarly b for the vector of
the amplitudes of the outgoing waves one obtains in
general system of equations

A(k)a +B(k)b + C(k)c = 0, (4)

in which A and B are (n+M)×M matrices and C
is (n+M)× n matrix the elements of which are ex-
ponentials and Green functions, regularized if needed
— recall that n is the number of internal parameters
associated with the junctions and M is the number
of the leads. What is important that all the entries of
the mentioned matrices allow for an analytical contin-
uation which makes it possible to ask for solution of
equations (4) for k = k0 from the open lower complex
halfplane.
It is obvious that for k2

0 6∈ R the columns of C(k0)
have to be linearly independent; otherwise k2

0 would
be an eigenvalue of H with an eigenfunction supported
on the manifold Ω only. Hence there are n linearly
independent rows of C(k0) and after a rearrangement
in equations (4) one is able to express c from the
first n of them. Substituting then to the remaining
equations one can rewrite them in the form

Ã(k0)a + B̃(k0)b = 0 (5)

with Ã(k0) and B̃(k0) being M × M matrices the
entries of which are rational functions of the entries
of the previous ones. Suppose that det Ã(k0) = 0,
then there exists a solution of the previous equation
with b = 0, and consequently, k0 is an eigenvalue
of H since Im k0 < 0 and the corresponding eigen-
function belongs to L2, however, this contradicts to
the self-adjointness of H. Now it is sufficient to note
that the S-matrix analytically continued to point k0
equals −B̃(k0)−1Ã(k0) hence its pole singularities are
solutions of the equation det B̃(k) = 0.
Let us turn to resolvent resonances and consider

the exterior complex scaling transformation Uθ with
Im θ > 0 large enough to reveal the sought pole on
the second sheet of the energy surface. Choosing
arg θ > arg k0 we find that the solution aj(k)e−ikx
on the j-th lead, analytically continued to the point
k = k0, is after the transformation by Uθ exponentially
increasing, while bj(k)eikx becomes square integrable.
This means that solving in L2 the eigenvalue problem
for the non-selfadjoint operator Hθ obtained from
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H = HU one has to find solutions of (5) with a = 0.
This leads again to the condition det B̃(k) = 0 thus
concluding the proof.

Remarks 3.5. (1.) It may happen, of course, that
at some junctions the leads are disconnected from
the manifold since the conditions (1) are locally
separating and define a point interaction at those
points, or that a junction coincides with a zero
of an eigenfunction of H0. In such situations it
may happen that H has eigenvalues, either posi-
tive, embedded into the continuous spectrum, or
negative. In terms of the momentum variable k,
these eigenvalues appear in pairs symmetric w.r.t.
the origin.

(2.) In the case of separating conditions (1) it may
happen that the complex-scaled operator Hθ has
an eigenvalue in k2

0 with eigenfunction supported
outside Ω, then k0 is also a pole of S(k); the poles
multiplicities of the resolvent and the scattering
matrix may differ in this situation.

(3.) In the quantum-graph analogue when Ω is re-
placed by a compact metric graph the decompo-
sition of Lemma 3.3 cannot be used since the de-
ficiency indices of H ′0 may, in general, exceed n
and one can have extensions with the wave func-
tions discontinuous at the junctions. The role of
the internal parameters is instead played by the
coefficients of two linearly independent solutions on
each (internal) edge.

4. Resonance asymptotics
The aim of this section is to say something about the
asymptotic behaviour of the resolvent poles with re-
spect to an increasing family of regions which cover in
the limit the whole complex plane. Using Lemma 3.3
let us write the manifold part f(·, k) of a function
from the deficiency subspace of H ′ as a linear combi-
nation of Green functions of HΩ, acting as negative
Laplace-Beltrami operator on Ω. For k2 6∈ σ(HΩ) and
x in the vicinity of the point xi we then have

f(x, k) =
n∑
j=1

cjG(x, xj ; k) = ciF0(x, xi)

+ ciF1(x, xi; k) +
n∑

i 6=j=1
cjG(xi, xj ; k)

+O
(
r(x, xi)

)
which makes it easy to find the generalized boundary
values ci(f) and di(f) to be inserted into the coupling
conditions (1), or effective conditions (3).
We will employ the latter with matrix Ũ(k) =

diag
(
Ũ1(k), . . . , Ũn(k)

)
whose blocks correspond to

junctions of Γ. We introduce

Q0(k) =
{
G(xi, xj ; k), i 6= j

F1(xi, xi; k), i = j

which allows us to write d(f) = Q0(k)c, and sub-
stituting into (3) we can write the solvability of the
system which determines the resonances as

det
[(
Ũ(k)− I

)
Q0(k) + i

(
Ũ(k) + I

)]
= 0. (6)

We note that the matrices Ũj(k) entering this con-
dition may be singular, however, this may happen
for at most M values of k, taking all the conditions
together.
We also note that if the Hamiltonian H has an

eigenvalue k2 embedded in its continuous spectrum
covering the interval R+, the corresponding k > 0 also
solves the equation (6). Hence, as we have indicated
in the introduction, from now on — for purpose of this
section — we will include such embedded eigenvalues
among resonances.

Having formulated the resonance condition we can
ask how its solutions are distributed. To count zeros
of a meromorphic function we employ the following
auxiliary result.

Lemma 4.1. Let g be meromorphic function in C
and suppose that it has no pole or zero on the circle
CR = {z : |z| = R}. Then the difference between
the number of the zeros and poles of g in the disc of
radius R of which CR is the perimeter is given by∫

CR

g(z)′

g(z) dz,

with prime denoting the derivative with respect to z,
or equivalently, it is the difference between the number
of jumps of the phase of g(z) from 2π to 0 along the
circle CR and the jumps from 0 to 2π.

Proof. The argument is well known, and we present
it just for the sake of completeness. Suppose that
g(·) has at z0 a zero of multiplicity s, i.e. g(z) =
h(z)(z − z0)s with neither h(z) nor h(z)′ having a
zero or a pole at z0. Using

g(z)′

g(z) = h(z)′

h(z) + s

z − z0

we find

Resz0

g(z)′

g(z)

= 1
(s− 1)! lim

z→z0

ds−1

dzs−1

(
(z − z0)s g(z)′

g(z)

)
= s;

a similar result differing only by the sign is obtained
in the case of a pole of multiplicity s. Consequently,
the function g(·)′/g(·) has pole with the residue s if
g(·) has zero of multiplicity s, and it has pole with the
residue −s at points where g(·) has pole of multiplic-
ity s. Furthermore, g(·)′ does not have a pole at z0
as long as g(·) does not which can be easily seen from
the appropriate Laurent series. Using now the residue
theorem we arrive at the desired integral expression.
The claim about the number of phase jumps follows
from the fact that g′(z)/g(z) =

(
Ln g(z)

)′.
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4.1. Manifolds with the leads attached
at a single point

We shall consider the situation when Γ has a single
junction, i.e. there is a point x0 ∈ Ω at which all the
M halfline leads are attached. Then the matrix func-
tionQ0(k) is reduced to dimension one and it coincides
with the regularized Green function F1(x0, x0; k); for
simplicity in the rest of this subsection we drop x0
from the argument. The resonance condition (6) then
becomes

(
ũ(k) − 1

)
F1(k) + i

(
ũ(k) + 1

)
= 0; we use

the lower-case symbol to stress that Ũ(k) is just a
number in this case.

The aim is now to establish the high-energy asymp-
totics. If we exclude the case of ũ(k) = 1 when the
leads are obviously decoupled from the manifold and
the motion on Ω is described by the Hamiltonian H0,
we can without loss of generality rewrite the resonance
condition as

F (k) := F1(k) + i
ũ(k) + 1
ũ(k)− 1 = 0.

From (3) we see that ũ(·) − I is a rational function.
Consequently, it may add zeros or poles to those of
F1(·), however, their number is finite and bounded
by M and n = 1, respectively. The main thing is
thus to find the behaviour of F1(k), in particular, its
asymptotics for k far enough from the real axis.

Lemma 4.2. The asymptotics of the regularized
Green function is the following:
(1.) For d = 2 we have F1(k) = 1

2π
(
ln(±ik)− ln 2−

γE
)

+O(| Im k|−1) if ∓ Im k > 0,
(2.) For d = 3 we have F1(k) = ± ik

4π + O(| Im k|−1)
if ∓ Im k > 0,

where γE stands for the Euler constant.

Proof. The claim can be easily verified by reformulat-
ing results of Avramidi [3, 4] on high-mass asymptotics
of the operator −∆ +m2 as m→∞. More precisely,
it follows from the stated asymptotics of equations
(33) and (36) in [4] in combination with the expres-
sion for bq given in [3]. The constant a0 in [4] can
be determined from the form of the singular parts of
Green function to fit with our convention.

Remark 4.3. In the case of a graph with a compact
core corresponding to d = 1, which we use for com-
parison, one has instead F1(k) = ± 1

2ik +O(| Im k|−2)
for ∓ Im k > 0.

Now we can use the previous lemmata to prove the
main result of this section.

Theorem 4.4. Consider a manifold Ω, dim Ω = 2,
and let HU be the Hamiltonian on Ω with several
halflines attached at a single point by coupling con-
dition (1). Then all the resonances of this system
are located in the k-plane within a finite-width strip
parallel to the real axis.

Proof. From equation (3) it follows that ũ(k) and sub-
sequently also the expression i

(
ũ(k)− 1

)−1(
ũ(k) + 1

)
is a rational function of the momentum variable k.
Hence there exists such a constant C that for | Im k| >
C the leading term of F (k) behaves either like a mul-
tiple of ln | Im k| or like the leading term of previously
mentioned rational function. The constant C can be
chosen such that the contribution of the rest of F does
change substantially the phase of F . More precisely,
we then have |kn| ≥ Cn and∣∣ln (∓ik)

∣∣ =
∣∣∣ln |k| ∓ π

2 + arg k
∣∣∣ ≥ 1

2 lnC

for large enough C, and consequently, the dominant
phase behaviour of

ank
n

(
1 +

ln(∓ik) +
∑n−1
j=0 ajk

j +O(|k|)
ankn

)
and

ln(∓ik)
(

1 + c+O(|k|)
ln(∓ik)

)
is determined by the terms in front of the brackets, in
particular, there are finitely many jumps of the phase
of F between zero and 2π along the part of the circle
|k| = R in the region | Im k| > C with C sufficiently
large. In other words, all but finitely many resonances
can be found within the strip | Im k| < C, hence all
resonances are located within some strip parallel to
the real axis in the momentum plane.

Theorem 4.5. Let d = 3, and let HU be Hamiltonian
on Ω with several halflines attached at one point by
coupling condition (1). Then all resonances of HU are
located within a strip parallel to the real axis.

Proof. In the case when the coupling term does not
coincide with the first term of asymptotics of F1, i.e.
(ũ(k) − 1)−1(ũ(k) + 1) 6= ± k

4π , one can employ the
same arguments as in previous theorem. Let us check
that no unitary matrix can lead to such an effective
coupling matrix. If it were the case we would have

ũ(k) = −4π ± k
4π ∓ k . (7)

Assume that (7) holds true for some unitary matrix
U . For the upper sign the expression diverges at
k = 4π; this contradicts the unitarity of U , by which
its modulus must not exceed one.
Let us now turn to the lower-sign case. Using

U4 = V −1DV , U2V = U2V
−1 and U3V = V U3 with a

diagonal D and a unitary V , the equation (7) becomes

−4π − k
4π + k

= u1 − U2V

(
D − 1 + k

1− k I
)−1

U3V .

Let us find how the right-hand side behaves in the
vicinity of −4π choosing k = −4π + ε. If none of
the eigenvalues of D equals 1−4π

1+4π the relation cannot
be valid as ε→ 0. Furthermore, combining (7) with
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the behaviour of the last expression as k → 1, we
find u1 = 1−4π

1+4π . Were there two or more eigenval-
ues of D equal to 1−4π

1+4π , we could conclude that the
vector (u1, U3V )T has norm bigger than one, which
contradicts the unitarity of U . Consequently, there is
exactly one eigenvalue 1−4π

1+4π of matrix D. Since the
rows and columns of U4 can be rearranged, we may
assume that it is the first eigenvalue in which case we
have

− 8π
ε

= u1 − 1 + U
(1)
2V U

(1)
3V

(1 + 4π)(1 + 4π + ε)
2ε

− U ′2V
(
D′ − 1− 4π + ε

1 + 4π − εI
)−1

U ′3V ,

where U (1)
2V and U (1)

3V are the first entries of U2V and
U3V , and U ′2V and U ′3V is rest of the row/column,
respectively. To match the ε−1 terms on both sides
of the last equation, the identity

−8π = (1 + 4π)2

2 U
(1)
2V U

(1)
3V

has to be valid. From this and the unitarity of U it fol-
lows that |U (1)

2V | = |U
(1)
3V | =

√
1−

( 1−4π
1+4π

)2. Using the
unitarity again, we note that the column (u1, U3V )T

must have norm equal to one, and since we know al-
ready that u1 = 1−4π

1+4π , it follows that U
′
2V = U ′3V = 0.

Equation (7) now becomes

− 4π − k
4π + k

= 1− 4π
1 + 4π

−
(

1−
(1− 4π

1 + 4π

)2)
eiϕ
(1− 4π

1 + 4π −
1 + k

1− k

)−1

with ϕ being the phase of U (1)
2V U

(1)
3V . This clearly

cannot be true for all k, which can be seen, for instance,
from observing the limit k →∞; in this way we come
to a contradiction.

The two previous claims show that, unlike the case
of quantum graphs, one cannot find a sequence of
resonances which would escape to imaginary infinity
in the momentum plane; in the next section we pro-
vide a couple of examples illustrating the comparison
between the one-dimensional case and the two- and
three-dimensional cases. Let us stress, however, that
any such sequence tends to infinity along the real axis,
and thus the above results do not answer the question
stated in the opening, namely whether the resonance
asymptotics always has a Weyl character.
Also, we postpone to another paper discussion of

the case when halflines are attached at two and more
points; we note that the Green function on the mani-
fold between two distinct points does not depend only
on local curvature properties, but also nontrivially on
the structure of the whole manifold. Also the reso-
nance trajectories from the fully decoupled case to
the coupled case will be left for another paper.

l�l 0

Figure 2. A ‘thin-hedgehog’ manifold, d = 1

4.2. Examples
To illustrate how the resonance asymptotical be-
haviour depends on the dimension of Ω we now con-
sider two examples of a planar manifold with Dirichlet
boundary conditions in dimensions one and two.

First we illustrate the difference between dimensions
one and two in a pair of examples, that at first glance
may appear similar. In the former case one is able to
adjust the parameters to obtain a non-Weyl graph for
which one half of the resonances escape to imaginary
infinity, hence the number of phase jumps along the
circle of increasing radius increases. On the other
hand, we do not observe such behaviour in dimension
two.

Example 4.6. In the case dim Ω = 1 we consider an
abscissa of length 2l with M halflines attached in the
middle — cf. Figure 2. We impose Dirichlet boundary
conditions at its endpoints, f(−l) = f(l) = 0, and
condition (1) at the middle. The Green function of
the operator H0 is given by

G(x, y; k) = F1(x, y; k) =
∑
n

ψ̄n(x)ψn(y)
λn − k2

= 1
l

∞∑
n=1

cos (2n−1)πx
2l cos (2n−1)πy

2l( (2n−1)π
2l

)2 − k2
.

Substituting, in particular, x = y = 0 one obtains

F1(0, 0; k) = 1
l

∞∑
n=1

1( (2n−1)π
2l

)2 − k2
= 1

2k tan kl.

Substituting this into the resonance condition one can
check easily that resonance count asymptotics has a
non-Weyl character if the coupling is chosen as follows,

i
ũ(k) + 1
ũ(k)− 1 = ± i

2k ⇒ ũ(k) = −2k ∓ 1
2k ∓ 1 .

The upper-sign choice can be realized, e.g. by taking
M = 2 and connecting the halflines with the abscissa
by Kirchhoff conditions — see [10, 11]. This corre-
sponds to a ‘balanced’ vertex connecting two internal
and two external edges. The phase of the regularized
Green function F1 and the left-hand side of the reso-
nance condition for the above choice of the coupling,
F1 + i

2k , can be seen in Figures 3 and 4, respectively;
Figure 4 illustrates how the number of phase jumps
increases for an increasing radius of the circle.
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Figure 3. Phase of the Green function for d = 1

Figure 4. Phase of the Green function plus i
2k

Example 4.7. Consider next an analogous situation
in two dimensions — a flat circular drum of radius
l with Dirichlet boundary condition at r = R and
M halflines attached in its center. Because of the
rotational symmetry, the Green function with one
argument fixed at y = 0 can be expressed as a combi-
nation of Bessel functions,

G(x, 0; k) = −1
4Y0(kr) + c(k)J0(kr),

where r := |x| and J0 and Y0 are Bessel functions of
the first and second kind, respectively. The constant
by Y0 is chosen so that G satisfies (2). We employ the
well-known asymptotic behaviour of Bessel functions,

Y0(x) ∼ − 2
π

(ln x/2 + γ), J0(x) ∼ 1

as x→ 0, which yields the expression

F1(k) = − 1
2π (ln k − ln 2 + γ) + Y0(kR)

4J0(kR) .

Using the asymptotics of J0(x) and Y0(x) as x→∞,
one finds that the second term on the right-hand side
behaves as 1

4 tan
(
kR − π

4
)
and its absolute value is

therefore bounded for k outside the real axis. The
phase of F1 for R = π is plotted in Figure 6.

R

Figure 5. The hedgehog manifold of Example 4.7

Figure 6. Phase of the regularized Green function
for the hedgehog manifold of Example 4.7

R

Figure 7. A disc with a lead in a magnetic field

5. Resonances for a hedgehog
manifold in magnetic field

Now we are going to present an example showing that
an appropriately chosen magnetic field can remove all
‘true resonances’ on a hedgehog manifold, i.e. those
corresponding to poles in the open lower complex
halfplane. We note that this does not influence the
semiclassical asymptotics in this case, because the
embedded eigenvalues of the system corresponding to
higher partial waves with eigenfunctions vanishing at
the junction will persist being just shifted.
The manifold of our example will consist of a disc

of radius R with a halfline lead attached at its centre.
For definiteness we assume that it is perpendicular to
the disc plane, cf. Figure 7. The disc is parametrized
by polar coordinates r, ϕ, and Dirichlet boundary
conditions are imposed at r = R. We suppose that
the system is under the influence of a magnetic field in
the form of an Aharonov-Bohm string which coincides
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in the ‘upper’ halfspace with the lead. The effect of
an Aharonov-Bohm field piercing a surface has been
studied in numerous papers — see, e.g., [1, 9, 21] —
so we can just modify those results for our purpose.
The idea is that the ‘true’ resonances will disappear
if we manage to choose such a coupling in which the
radial part of the disc wave function will match the
halfline wave function in a trivial way.
We write the Hilbert space of the model as H =

L2((0, R), rdr
)
⊗ L2(S1) ⊕ L2(R+); the admissible

Hamiltonians are then constructed as selfadjoint ex-
tensions of the operator Ḣα acting as

Ḣα

(
u
f

)
=
(
−∂

2u
∂r2 − 1

r
∂u
∂r + 1

r2

(
i ∂∂ϕ − α

)2
u

−f ′′

)

on the domain consisting of functions
(
u
f

)
with u ∈

H2
loc
(
BR(0)

)
satisfying u(0, ϕ) = u(R,ϕ) = 0 and

f ∈ H2
loc(R+) satisfying f(0) = f ′(0) = 0. The

parameter α in the above expression is the magnetic
flux of the Aharonov-Bohm string in the units of the
flux quantum; since an integer value of the flux plays
no role in view of the natural gauge invariance we
may restrict our attention to the values α ∈ (0, 1).
Using the partial-wave decomposition together

with the standard unitary transformation (V u)(r) =
r1/2u(r) to the reduced radial functions we get

Ḣα =
∞⊕

m=−∞
V −1ḣα,mV ⊗ I

where the component ḣα,m acts on the upper compo-
nent of ψ =

(
φ
f

)
as

ḣα,mφ = −d2φ

dr2 + (m+ α)2 − 1/4
r2 φ. (8)

To construct the self-adjoint extensions of Ḣα which
describe the coupling between the disc and the lead
the following functionals can be used,

Φ−1
1 (ψ) =

√
π lim
r→0

r1−α

2π

∫ 2π

0
u(r, ϕ)eiϕdϕ,

Φ−1
2 (ψ) =

√
π limr→0

r−1+α

2π

[∫ 2π
0 u(r, ϕ)eiϕdϕ

−2
√
πr−1+αΦ1

−1(ψ)
]
,

Φ0
1(ψ) =

√
π lim
r→0

rα

2π

∫ 2π

0
u(r, ϕ)dϕ,

Φ0
2(ψ) =

√
π limr→0

r−α

2π

[∫ 2π
0 u(r, ϕ)dϕ

−2
√
πr−αΦ0

1(ψ)
]
,

Φh
1(ψ) = f(0), Φh

2(ψ) = f ′(0).

The first two of them are, by analogy with [9], mul-
tiples of the coefficients of the two leading terms of
asymptotics as r → 0 of the wave functions from Ḣ∗α

belonging to the subspace with m = −1, the second
two correspond to the analogous quantities in the sub-
space with m = 0, and the last two are the standard
boundary values for the Laplacian on a halfline.
It is obvious that if the s-wave resonances should

be absent, one has to get rid of the second term in the
expression (8) for the m = 0 function, hence we will
restrict our attention to the case α = 1/2. By analogy
with the case of an Aharonov-Bohm flux piercing a
plane treated in [9], one obtains

(ψ1, Hψ2) = −
∫ 2π

0

∫ R

0
u1 r

−1/2 d2

dr2 r
1/2u2 r dr dϕ

−
∫ ∞

0
f1f2

′′ dx = −
∫ 2π

0

∫ R

0
ũ1ũ2

′′ dr dϕ

−
∫ ∞

0
f1f2

′′ dx = −
∫ 2π

0
ũ1ũ2

′ dϕ

+
∫ 2π

0

∫ R

0
ũ1
′
ũ2
′ dr dϕ− f1(0+)f ′2(0+)

+
∫ ∞

0
f1
′
f2
′ dx ,

where ũa = r1/2ua, a = 1, 2, is a multiple of the disc
component of ua (with the prime denoting the deriva-
tive with respect to r) and fa is the corresponding
halfline component. Hence we have

(ψ1, Hψ2)− (Hψ1, ψ2) = lim
r→0

∫ 2π

0

[
ũ1ũ2

′ − ũ2ũ1
′]dϕ

+ f2(0+)f ′1(0+)− f1(0+)f ′2(0+),

and using asymptotic expansion of u near r = 0,
√
πu(r, θ) =

(
Φ−1

1 (ψ)r−1/2 + Φ−1
2 (ψ)r1/2)e−iθ

+ Φ0
1(ψ)r−1/2 + Φ0

2(ψ)r1/2,

−2r
√
πu′(r, θ) =

(
Φ−1

1 (ψ)r−1/2 − Φ−1
2 (ψ)r1/2)e−iθ

+ Φ0
1(ψ)r−1/2 − Φ0

2(ψ)r1/2,

one finds

(ψ1, Hψ2)− (Hψ1, ψ2)
= Φ1(ψ1)∗Φ2(ψ2)− Φ1(ψ2)∗Φ2(ψ1),

where Φa(ψ) = (Φh
a,Φ0

a,Φ−1
a )T for a = 1, 2. Conse-

quently, to get a self-adjoint Hamiltonian one has to
impose coupling conditions similar to (1), namely

(U − I)Φ1(ψ) + i(U + I)Φ2(ψ) = 0 (9)

with a unitary U . We choose the latter in the form

U =

0 1 0
1 0 0
0 0 eiρ

 , (10)

i.e. the nonradial part (m = −1) of the disc wave
function is coupled to neither of the other two, while
the radial part (m = 0) is coupled to the halfline via
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Kirchhoff’s (free) coupling. To see that this choice
kills all the ‘true’ resonances, we choose the ansatz

f(x) = a sin kx+ b cos kx,
u(r) = r−1/2(c sin k(R− r)

)
which yields the boundary values

Φ1(ψ) = (b, c
√
π sin kR, 0)T,

Φ2(ψ) = k(a,−c
√
π cos kR, 0)T.

It follows now from the coupling conditions that

b = c
√
π sin kR, a = c

√
π cos kR,

hence
f(x) = c

√
π sin k(R+ x),

thus for any k 6∈ R and c 6= 0 the function f necessarily
contains a nontrivial part of the wave e−ikx. However,
as we have argued above, a resolvent resonance can
must have the asymptotics eikx only. In this way we
come to the indicated conclusion:

Proposition 5.1. The described system has no true
resonances for the coupling corresponding to matrix
(10) and magnetic flux α = 1

2 .

Since the effect occurs at a particular value of the
magnetic flux, it is also interesting to ask what hap-
pens if the field changes, so that α runs from zero to
1
2 . The symmetry of the problem allows us to use the
Ansatz u(r, ϕ) = R(r) eimϕ; this shows that one has
to solve the equation

−∂
2R(r)
∂r2 − 1

r

∂R(r)
∂r

+ 1
r2 (m+ α)2R(r) = k2R(r)

which can be easily transformed into Bessel equation
in the variable kr with the constant (m+ α). Hence
the radial part of the wavefunction on the disc is given
as a combination of Bessel functions and

u(r, ϕ) =
∑
m

(
a1mJm+α(kr) + a2mYm+α(kr)

)
eimϕ.

We employ the behaviour of Bessel functions in the
vicinity of zero,

Jα(x) ≈ 1
Γ(α+ 1)

(x
2

)α
, Yα(x) ≈ −Γ(α)

π

( 2
x

)α
,

which yields the values of the above functionals,

Φ0
1 =
√
π lim
r→0

rα

2π 2π−Γ(α)
π

a20

( 2
kr

)α
= −Γ(α)√

π

(2
k

)α
a20,

Φ0
2 =
√
π lim
r→0

r−α

2π 2πa10
1

Γ(α+ 1)

(kr
2

)α
=

√
π

Γ(α+ 1)

(k
2

)α
a10,

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

Figure 8. Trajectory of a resonance for α running
from zero to 1

2 .

Φ−1
1 =

√
π lim
r→0

r1−α

2π 2π 1
Γ(α)

(kr
2

)−1+α
a1−1

=
√
π

Γ(α)

(2
k

)1−α
a1−1,

Φ−1
2 = −

√
π lim
r→0

r−1+α

2π 2πΓ(α− 1)
π

( 2
kr

)−1+α
a2−1

= −Γ(α− 1)√
π

(k
2

)1−α
a2−1.

The resonance equation is then given by eq. (9) and
Dirichlet condition at the disc boundary,

a10Jα(kR) + a20Yα(kR) = 0,
a1−1Jα−1(kR) + a2−1Yα−1(kR) = 0.

In a particular case of U =
( 0 1 0

1 0 0
0 0 eiρ

)
resonances are

obtained as solutions to the condition

det
[(
−1 1
1 −1

)(1 0
0 −Γ(α)√

π

( 2
k

)α
Jα(kR)

)

+ i

(
1 1
1 1

)(
ik 0
0

√
π

Γ(α+1)
(
k
2
)α
Yα(kR)

)]
= 0,

which can be rewritten as

i
√
π

Γ(α+ 1)

(k
2

)α
Yα(kR) + k

Γ(α)√
π

(2
k

)α
Jα(kR) = 0.

In particular, for α = 1/2 it gives

sin kR− i cos kR√
πR

= 0

showing again that there are no resonances for α =
1/2.

For other values of α the condition can be solved
numerically. In Figure 8 we plot the trajectory of
one of the resonances as the value of α increases from
zero to 1

2 . The step is taken to be 0.01 for values
until α = 0.49, which corresponds to the sharp bend
of the curve, and from this point on the linear step
is replaced by a sequence of exponentially increasing
density accumulating at α = 1

2 .
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