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Abstract. In quite a few recent quantum models one is allowed to make a given Hamiltonian H
self-adjoint only after an ad hoc generalization of Hermitian conjugation, H† → H‡ := Θ−1H†Θ where
the suitable operator Θ is called Hilbert-space metric. In the generalized, hidden-Hermiticity scenario
with nontrivial metric Θ 6= I the current concept of solvability (meaning, most often, the feasibility of a
non-numerical diagonalization of H) requires a generalization (allowing for a non-numerical tractability
of Θ). A few very elementary samples of “solvable” quantum models of this new type are presented.
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1. Introduction
In a pre-selected Hilbert space H of states |ψ〉 ∈ H the
unitarity of the time evolution of a quantum system S is
usually guaranteed via a pre-selection of the generator
(i.e., of the Hamiltonian operator H) in self-adjoint
form, H = H†. It is obvious that the simultaneous
use of both of these pre-selections is over-restrictive. In
spite of the rather trivial nature of such an observation,
the practical removal of this restriction has always
been obstructed by mathematical difficulties. In our
present review-like paper we intend to argue that the
introduction of a new concept of solvability might help
in this respect.
From a purely pragmatic point of view one has

just two ways to seperate the choice of the Hilbert
space from the choice of the generator of evolution.
In the first case (= “option A”) one defines the “true”
generator H as acting in a “false”, unphysical Hilbert
space H = H(F) (following our compact review paper
[1] the superscript (F) abbreviates the word “friendly”).
Naturally, we must still, sooner or later, reconstruct
the correct physical Hilbert space H(S) in which H will
generate unitary evolution (the superscript (S) stands
here for “standard”). Otherwise, we would not be able
to make any probabilistic predictions.
In the second scenario (= “option B”) the initial

choice of a “correct” Hilbert space H(P) (where (P)

abbreviates “physical”) is being paralleled by our input
knowledge of an apparently incorrect Hamiltonian
H which is, typically, defined in another, friendlier
Hilbert space H(F) 6= H(P). Such a construction of the
model appears in fact slightly more natural. Indeed,
in the majority of textbooks one really starts from
the very initial specification of the suitable physical
Hilbert space. Typically, one chooses H(P) ≡ L2(R).
Unfortunately, the unusual Hamiltonian H must be,
sooner or later, also be mapped from its native space
H(F) into its interpretation-carrying alternative H(P).
Practical merits of the constructive and invertible

“option-B” transitions Ω : H(F) → H(P) between uni-
tarily non-equivalent Hilbert spaces were first revealed,
in the context of nuclear physics, by F. Dyson (cf. the
review paper [2] for more details). He was the first to in-
troduce computation-facilitating and Ω−induced transi-
tions between the “intractable”, microscopic, fermionic
Hamiltonians h = ΩHΩ−1 = h† in P-space and their
“tractable”, bosonic isospectral images H defined in
F-space. Albeit non-Hermitian in H(F), H 6= H†,
the latter operator appeared perfectly Hermitian in
H(S), i.e., it exhibited the hidden Hermiticity property
H = H‡ = Θ−1H†Θ, where Θ = Ω†Ω. In what follows,
in the language and notation of Ref. [1], let us call the
latter Hamiltonians H “crypto-Hermitian”.

One of the first physical models belonging to the for-
mer category “A” is due to Daniel Bessis [3] and Carl
Bender with coauthors (cf. his extensive review paper
[4]). They started their considerations from a truly
interesting candidate for the correct physical Hamilto-
nian operator H = p2 + ix3, which proves manifestly
non-Hermitian in the most common “false” Hilbert
space H(F) ≡ L2(R). Unfortunately, for the Bessis’
imaginary cubic oscillator the necessity of providing
a correct S-superscripted Hilbert space metric Θ 6= I
appeared to be a formidably difficult mathematical
task [5] which still seems to be far from completion [6].
Further models need to be developed. Indeed, the

active use of the whole three-Hilbert-space (THS, [1])
pattern is conceptually transparent, based just on an
ad hoc variability of the maps Ω and/or of the inner
products (i.e., in other words, on the freedom of our
varying metric Θ 6= I in the correct physical Hilbert
space of quantum states H(S)). After all, one may
find applications of the same or similar pattern in
the older literature on molecular physics [7], in the
relativistic quantum mechanics [8], in the variational
descriptions of many-body systems and spin lattices
[9] etc. Thus, all of the methodological questions of
applicability of the THS representation pattern deserve
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to be reanalyzed via as simple toy-model examples as
possible.

In our present paper we intend to review and comple-
ment the recent development of such a project, and we
will describe some of its consequences and ramifications
in some detail.

2. The current state of the art
From the point of view of the recent history of quantum
mechanics it was, certainly, fortunate that in some
of the above-mentioned specific hidden-Hermiticity
contexts people discovered the advantages of working
with such an operator representation H of a given
observable quantity (say, of the energy) which only
proved Hermitian after a change of the inner product in
the initially ill-chosen (i.e., by assumption, unphysical)
Hilbert space H(F) (the superscript (F) might also be
read here as abbreviating “former” or “first”). A shared
motivation of many of the above-cited papers speaking
about non-Hermitian quantum mechanics resulted just
from the observation that several phenomenologically
interesting operators (say, Hamiltonians) H appear
manifestly non-Hermitian in the “usual” textbook
setting and that they only become Hermitian in some
much less common representation of the Hilbert space
of states.

The amendments of space were, naturally, mediated
by the mere introduction of a non-trivial metric Θ =
Θ(S) 6= I entering the upgraded, S−superscripted inner
products,

〈ψ1|ψ2〉(F) → 〈ψ1|ψ2〉(S) := 〈ψ1|Θ|ψ2〉(F). (1)

Such an inner-product modification changed, strictly
speaking, the Hilbert space, H(F) → H(S). There were
several independent reasons for this. Besides the formal
necessity of re-installing the unitarity of the evolution
law, the costs of the transition to the more complicated
metric were found more than compensated by the gains
due to the persuasive simplicity of Hamiltonians (cf.
[2] or [4] in this respect). Moreover, for some quantum
systems the transition F → S may prove motivated by
physics. The most elementary illustration can be found
in our recent study [10] where a consistent quantization
of the Big Bang has been performed in a schematic
toy model in which the Hamiltonian remained self-
adjoint while only a “geometry” observable proved
non-Hermitian, Q 6= Q†.

For a generic quantum system characterized by two
observables H and Q, Hermitian or not, a character-
istic scenario may be found displayed in Fig. 1. In
the picture (where the whole plane symbolizes a mul-
tidimensional space of all parameters of the model)
we see three circles. Schematically, they represent
three boundaries ∂D of three domains D. Thus, the
spectrum of H is assumed potentially observable (i.e.,
real and, for simplicity, non-degenerate) in the left
lower domain DH . Similarly, let the spectrum of Q
be real and non-degenerate inside the right lower do-
main DQ. In parallel, the spectrum of the available

the physical

subdomain 

of stability

domain of

domain ofdomain of

parametric

parametricparametric
QH

I II

III

Θ

Figure 1. Generic domains of parameters for which
the metric Θ exists (upper disc) or for which the spectra
of observables H or Q remain potentially observable
(the two respective lower discs).

Hermitizing metrics Θ must be, by definition, strictly
positive (upper circle, domain DΘ). In this arrange-
ment, operator Q ceases to represent an observable in
domain “I” while operator H ceases to represent an
observable in domain “II”. In domain “III”, neither of
these two operators can be made Hermitian using the
available class of metrics Θ, in spite of the reality of
both spectra.

A number of open questions emerge. Some of them
will be discussed in our present paper. Via a few
illustrative examples we will show, among others, that
and why the variability of the metric Θ in the physical
Hilbert space H(S) represents an important merit of
quantum theory, and that and why the closed-form
availability of operator Θ (i.e., a new form of solvability)
is of a truly crucial importance in applications.

3. Methodical guidance:
dimension two

3.1. Toy-model Hamiltonian
In the simplest possible two-dimensional and real
Hilbert space H(F) ≡ R2 an instructive sample of
the time evolution may be chosen as generated by the
Hamiltonian (i.e., quantum energy operator or matrix)
of Ref. [11], example II.1.1,

H = H(2)(λ) =
[
−1 λ
−λ 1

]
. (2)

Its eigenvalues E(2)
± = ±

√
1− λ2 are non-degenerate

and real (i.e., in principle, observable) for λ inside
interval (−1, 1). On the two-point domain boundary
{−1, 1}, these energies degenerate in such a way that
the canonical form of the matrix itself becomes a
Jordan block. Subsequently, the energies complexify
whenever |λ| > 1. In the current literature one calls
the boundary points λ = ±1 “exceptional points” (EP,
[11]). At these points the eigenvalues degenerate and
our toy-model Hamiltonian ceases to be diagonalizable,
becoming unitarily equivalent to a triangular Jordan-
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block matrix,

H(2)(1) =
[
H(2)(−1)

]†
=
[
−1 1
−1 1

]
= 1

2

[
1 −1
1 1

] [
0 1
0 0

] [
1 1
−1 1

]
. (3)

At |λ| > 1, the diagonalizability gets restored but the
eigenvalues cease to be real, E(2)

± = ±i
√
λ2 − 1. In the

spirit of current textbooks, this leaves these purely
imaginary complex conjugate energies unobservable.

3.2. Hidden Hermiticity: The set of all
eligible metrics

Our matrix H(2)(λ) remains diagonalizable and crypto-
Hermitian whenever −1 < λ = sinα < 1, i.e., for the
auxiliary Hamiltonian-determining parameter α lying
inside a well-defined physical domain DH such that
α ∈ (−π/2, π/2). In such a setting, matrix H(2)(λ)
becomes tractable as a Hamiltonian of a hypotheti-
cal quantum system whenever it satisfies the above-
mentioned hidden Hermiticity condition

H = H‡ := Θ−1H†Θ. (4)

Suitable candidates for the Hilbert-space metric are
all easily found from the latter linear equation,

Θ = Θ(2)
λ (a, d) =

[
a b
b d

]
, b = −λ2 (a+ d). (5)

All of their eigenvalues must be real and positive,

θ± = 1
2

[
a+ d±

√
(a− d)2 + λ2(a+ d)2

]
> 0. (6)

This is satisfied for any positive σ = a + d > 0 and
with any real δ = a− d such that√

1− λ2 = cosα > δ

σ
> −

√
1− λ2 = − cosα. (7)

Without loss of generality we may set σ = 2, put
δ = cosα cosβ and treat the second free parameter
β ∈ (−π/2, π/2) as numbering the admissible metrics

Θ(2)
(physical) =

[
1 + cosα cosβ − sinα
− sinα 1− cosα cosβ

]
(8)

with eigenvalues

θ± = 1±
√

1− cos2 α sin2 β > 0. (9)

Thus, all of the eligible physical Hilbert spaces are
numbered by two parameters, H(S) = H(S)(α, β).

3.3. The second observable Q = Q‡

What we now need is the specification of the domain
DQ. For the general four-parametric real-matrix ansatz

Q̃ =
[
w x
y z

]
(10)

the assumption of observability implies that the eigen-
values must be both real and non-degenerate,

4xy > −(w − z)2. (11)

Once we shift the origin and rescale the units we may
set, without loss of generality, w = −z = −1. This
simplifies the latter condition yielding our final untilded
two-parametric ansatz

Q =
[
−1 x
y 1

]
, xy > −1. (12)

At any fixed metric Θ(2)
(physical) the crypto-Hermiticity

constraint (4) imposed upon matrix (12) degenerates
to the single relation

x− y = 2 sinα− (x+ y) cosα cosβ. (13)

The sum s = x+ y may be now treated as the single
free real variable which numbers the eligible second
observables. The range of this variable should comply
with the inequality in Eq. (12). After some straight-
forward additional calculations one proves that the
physical values of our last free parameter remain un-
restricted, s ∈ R, due to the validity of Eq. (13). We
may conclude that our example is fully non-numerical.
It also offers the simplest nontrivial explicit illustration
of the generic pattern as displayed in Fig. 1.

4. Hilbert spaces H(F) of
dimension N

4.1. Anharmonic Hamiltonians
During the developments of mathematics for quantum
theory, one of the most natural paths of research started
from the exactly solvable harmonic-oscillator potential
V (HO)(x) = ω2x2 and from its power-law perturbations
V (AHO)(x) = ω2x2 + gxm. Perturbation expansions
of energies proved available even at the “unusual”,
complex values of the coupling constants g /∈ R+. The
particularly interesting mathematical results have been
obtained at m = 3 and at m = 4. In physics and, in
particular, in quantum field theory the climax of the
story came with the letter [12] where, under suitable ad
hoc boundary conditions and constraints upon g = g(m)
(called, conveniently, PT -symmetry), the robust reality
(i.e., in principle, observability) of the spectrum was
achieved at any real exponent m > 2 even for certain
unusual, complex values of the coupling.
It has been long believed that the PT -symmetric

Hamiltonians H = H(m) with real spectra are all con-
sistent with the postulates of quantum theory, i.e., that
these operators are crypto-Hermitian, i.e., Hermitian
in the respective Hamiltonian-adapted Hilbert spaces
H(S)(m) [4]. Due to the ill-behaved nature of the wave
functions at high excitations, unfortunately, such a
simple-minded physical interpretation of these models
has been shown contradictory [6]. On these grounds
one has to develop some more robust approaches to
the theory for similar models in the nearest future.
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In our present paper we will avoid such a danger by
recalling the original philosophy of Scholtz et al [2].
They simplified the mathematics by admitting, from
the very beginning, that just the bounded-operator
and/or discrete forms of the eligible anharmonic-type
toy-model Hamiltonians H 6= H† should be considered.

4.2. Discrete Hamiltonians
For our present illustrative purposes we intend to
recall, first of all, one of the most elementary versions
of certain general, N−dimensional matrix analogues
of the differential toy-model Hamiltonians, which were
proposed in Refs. [13]. Referring to the details as
described in that paper, let us merely recollect that
these Hamiltonians are defined as certain tridiagonal
and real matrices H(N) = H

(N)
0 + V (N) where the

“unperturbed”, harmonic-oscillator-simulating main
diagonal remains equidistant, H(N)

11 = (H(N)
0 )11 =

−N + 1, H(N)
22 = (H(N)

0 )22 = −N + 3, . . . , H(N)
NN =

(H(N)
0 )NN = N−1 while the off-diagonal “perturbation”

becomes variable and, say, antisymmetric, V (N)
12 =

−V (N)
21 , V (N)

23 = −V (N)
32 , . . . , V (N)

N−1N = −V (N)
NN−1. The

word “perturbation” is written here in quotation marks
because, in the light of results of Ref. [14], the spectral
properties of the model become most interesting in the
strongly non-perturbative regime where one up-down
symmetrizes and re-parametrizes the perturbation

V
(N)
k,k+1 = −V (N)

k+1,k

=
√
k(N − k)(1− t− t2 − . . .− tJ−1 −GktJ),

N = 2J or N = 2J + 1. (14)

This parametrization proved fortunate in the sense that
it enabled us to replace the usual numerical analysis
by a rigorous computer-assisted algebra. In this sense,
the model in question appeared to represent a sort of
an exactly solvable model, precisely in the spirit of our
present message.

The new parameter t ≥ 0 is auxiliary and redundant.
It may be interpreted, say, as a measure of distance
of the system from the boundary ∂DH of the domain
of spectral reality. At very small t the local part
of boundary ∂DH has been shown to have the most
elementary form of two parallel hyperplanes in the
J−dimensional space of parameters Gn [14].
In the simplest nontrivial special case of N = 2

the present Hamiltonian H(N) degenerates precisely
to the above-selected toy-model of section 3. Vice
versa, the basic components of the N = 2 discussion
(i.e., first of all, the feasibility of the construction
of the metric and of the second observable) might
be immediately transferred to all N > 2. Several
steps in this direction may be found performed in our
recent paper on the solvable benchmark simulations
of the phase transitions interpreted as a spontaneous
PT -symmetry breakdown [15].

5. The problem of non-uniqueness
of the AD HOC metric Θ = Θ(H)

The roots of the growth of popularity of the description
of stable quantum systems using representations of
observables which are non-Hermitian in an auxiliary
Hilbert space H(F) may be traced back not only to the
entirely abstract mathematical analyses of spectra of
quasi-Hermitian operators [16] and of the operators
which are self-adjoint in the so-called Krein spaces
with indefinite metric [17] but also to the emergence
of manageable non-Hermitian models in quantum field
theory [18] or even in classical optics [19], etc.
After a restriction of attention to quantum the-

ory, the key problem emerges in connection with the
ambiguity of the assignment H → Θ(H) of the phys-
ical Hilbert space H(S) to a given generator H of
time evolution. For many phenomenologically rele-
vant Hamiltonians H it appeared almost prohibitively
difficult to define and construct at least some of the
eligible metrics Θ = Θ(H) in an at least approximate
form (cf., e.g., Ref. [5] in this respect). Clearly, in
methodological analyses the opportunity becomes wide
open to finite-dimensional and solvable toy models.

5.1. Solvable quantum models with more
than one observable

Let us restrict the scope of this paper to the quantum
systems which are described by a Hamiltonian H =
H(λ) accompanied by a single other operator Q = Q(%)
representing a complementary measurable quantity like,
e.g., angular momentum or coordinate. In general we
will assume that symbols λ and % represent multiplets
of coupling strengths or of any other parameters with an
immediate phenomenological or purely mathematical
significance. We shall also solely work here with the
finite-dimensional matrix versions of our operators of
observables.

In such a framework it becomes much less difficult
to analyze one of the most characteristic generic fea-
tures of crypto-Hermitian models which lies in their
“fragility”, i.e., in their stability up to the point of a
sudden collapse. Mathematically, we have seen that the
change of the stability/instability status of the model
is attributed to the presence of the exceptional-point
horizons in the parametric space. In the context of phe-
nomenology, people often speak about the phenomenon
of quantum phase transition [19].
Let us now return to Fig. 1, where the set of the

phase-transition points pertaining to the Hamiltonian
H is depicted as a schematic circular boundary ∂DH of
the left lower domain inside which the spectrum of H
is assumed, for the sake of simplicity, non-degenerate
and completely real. Similarly, the right lower disc
or domain DQ is assigned to the second observable Q.
Finally, the upper, third circular domain DΘ charac-
terizes the parametric subdomain of the existence of
a suitable general or, if asked for, special class of the
eligible candidates Θ for a physical metric operator.
The key message delivered by Fig. 1 is that at any N ,
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Figure 2. The boundary of the domain of reality of
the spectrum of Hamiltonian (15) in z − g plane (i. e.,
the zero line of polynomial G(z, g)).

the correct physics may still only be formulated inside
the subdomain D = DH ∩ DQ ∩ DΘ. A generaliza-
tion of this scheme to systems with more observables,
Q→ Q1, Q2, . . . would be straightforward.

5.2. Quantum observability paradoxes
One of the most exciting features of all of the above-
mentioned models may be seen in their ability to
connect the stable and unstable dynamical regimes,
within the same formal framework, as a move out of
the domain D though one of its boundaries. In this
sense, the exact solvability of the N <∞ toy models
proves crucial since the knowledge of the boundary
∂DΘ remains practically inaccessible in the majority
of their N =∞ differential-operator alternatives [5].

In the current literature on the non-Hermitian rep-
resentations of observables, people most often discuss
just the systems with a single relevant observable H(λ)
treated, most often, as the Hamiltonian. In such a
next-to-trivial scenario it is sufficient to require that
operator H remains diagonalizable and that it pos-
sesses a non-degenerate real spectrum. Once we add
another observable Q into considerations, the latter
conditions merely specify the interior of the leftmost
domain DH of our diagram Fig. 1.
One may immediately conclude that the physical

predictions provided by the Hamiltonian alone (and
specifying the physical domain of stability as an overlap
between DH and the remaining upper disc or domain
DΘ) remain heavily non-unique in general. According
to Scholtz et al [2] it is therefore virtually obligatory to
take into account at least one other physical observable
Q = Q(%).
In opposite direction, even the use of a single ad-

ditional observable Q without any free parameters
may prove sufficient for an exhaustive elimination of
all of the ambiguities in certain models [4]. One can
conclude that the analysis of the consequences of the
presence of the single additional operator Q = Q(%)
deserves a careful attention. At the same time, without
the exact solvability of the models, some of their most
important merits (e.g., the reliable control and insight

–1.5 –1 1 1.5

–0.8

–0.4

0.4g

z

Figure 3. The comparison of zero lines of functions
G0(z, g) and G(z, g).

to the processes of the phase transitions) might happen
to be inadvertently lost.

6. Adding the degrees of freedom
6.1. Embedding: N = 2 space inside N = 3

space
In the spirit of Ref. [20] a return to observability
may be mediated by an enlargement of the Hilbert
space. For example, a weak-coupling immersion of our
matrices H(2)(λ) in their three by three extension

H(3) =


−1 1 + z 0

−1− z 1 g

0 −g 3

 (15)

may be interpreted as a consequence of the immer-
sion of the smaller Hilbert space (where one defined
Hamiltonian (2)) into a bigger Hilbert space. Via the
new Hamiltonian (15), the old Hamiltonian becomes
weakly coupled to a new physical degree of freedom by
the interaction proportional to a small constant g.
In a way discussed in more detail in our older pa-

per [21], the boundary of the new physical domain
DH(3) coincides with the zero line of the following
polynomial G(z, g) in two variables,

60g2z2 − 6zg4 − 12g2z3 − z6 − 162z
+ 27g2 − 18g4 − g6 − 153z2 − 3g4z2 − 3g2z4

− 6z5 − 30z4 − 80z3 + 144zg2. (16)

The shape of this line is shown in Fig. 2.
In the vicinity of z = 0 and g = 0, the truncated

polynomial G0(z, g) = 27g2 − 162z − 18g4 + 144zg2 −
g6 − 153z2 − 6zg4 appears useful as a source of the
auxiliary boundary of a fairly large subdomain D0 of
the physical domain DH(3) (cf. Fig. (3)).
All of these observations imply that the original

z = 0 boundary bends up, i.e., the net effect of the
introduction of the new, not too large coupling g 6= 0
lies in the enlargement of the domain of the reality of
the energy spectrum beyond λ = 1 (and, symmetrically,
below λ = −1). In other words, an enhancement of the
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g z

θ

Figure 4. The subdominant eigenvalue of metric
Θ(3)(1, 1, 1). It stays safely positive in the whole prese-
lected rectangle of parameters z and s.

stability of the system with respect to some random
perturbations is achieved simply by coupling it to an
environment.

6.2. Global metrics at N = 3
The enlarged system controlled by Hamiltonian H(3)

of Eq. (15) has been chosen as crypto-Hermitian. The
construction of the eligible metrics

Θ(3) =


a b c

b f h

c h m

 (17)

of the enlarged and re-coupled system may be perceived
as another exercise in the construction of the metrics
exactly, by non-numerical means. Using the similar
techniques we obtain, step-by-step,

c = (−h− hz − bg)/4,
b = −(4az + 4f + 4fz + 4a+ hg + ghz)/(8 + g2)

and eliminate, finally,

− 2h(9 + 2z + z2 + g2)/g = −2az − az2

+ 7f − 2fz − fz2 − a+ 8m+mg2 + fg2.

Thus, starting from the three arbitrary real param-
eters Θ11 = a, Θ22 = f and Θ33 = m we re-
cursively eliminate Θ1,3 = c = (−h − hz − bg)/4,
Θ1,2 = b = −(4az+ 4f + 4fz+ 4a+hg+ ghz)/(8 + g2)
and Θ2,1 = h = − 1

2g(−2az − az2 + 7f − 2fz − fz2 −
a+ 8m+mg2 + fg2)/(9 + 2z + z2 + g2). As a final
result we obtain the formula for

2(9 + 2z + z2 + g2)Θ1,2

= zg2m+ fzg2 +mg2 + fg2 − 3fz2 − 3az2

− fz3 − az3 − 9a− 11fz − 11az − 9f.

Thus, we may denote Θ = Θ(3)(a, f,m) and conclude
that the metric is obtainable in closed form so that
our extended, N = 3 quantum system remains also
solvable.

–2

–1

0

–1 –0.5 0 0.5 1

g
z

Figure 5. The complete domain of positivity of the
smallest eigenvalue of metric Θ(3)(1, 1, 1).

If we also wish to determine the critical boundaries
∂DΘ of the related metric-positivity domain DΘ, the
available Cardano’s closed formulae for the correspond-
ing three eigenvalues θj yield just the correct answer
in a practically useless form. Thus, we either have
to recall the available though still rather complicated
algebraic boundary-localization formulae of Ref. [21]
or, alternatively, we may simplify the discussion by
the brute-force numerical localization of a sufficiently
large metric-supporting subdomain in the parametric
space. For the special choice of a = f = m = 1 we
found, for example, that for the sufficiently large range
of parameters z and g as chosen in Figs. 4 and 5 we
reveal that while the two upper eigenvalues θ2 and
θ1 remain safely positive, the minimal eigenvalue θ0
only remains positive inside the minimal domain of
positivity as displayed in Fig. 5. Thus, the boundary
of the latter domain represents an explicit concrete
realization of its abstract upper-circle representative
in Fig. 1.

7. Up-down symmetrized couplings
to the environment

7.1. Toy model with N = 9
The PT −symmetric and tridiagonal nine-by-nine-
matrix Hamiltonian H(9) of Ref. [13] reads

−8 b 0 0 0 0 0 0 0
−b −6 c 0 0 0 0 0 0
0 −c −4 d 0 0 0 0 0
0 0 −d −2 α 0 0 0 0
0 0 0 −α 0 α 0 0 0
0 0 0 0 −α 2 d 0 0
0 0 0 0 0 −d 4 c 0
0 0 0 0 0 0 −c 6 b
0 0 0 0 0 0 0 −b 8


.

In the limit α → 0 it splits into a central one-
dimensional submatrix with eigenvalue 0 and a pair of
non-trivial four-by-four sub-Hamiltonians H(4). The
spectrum remains real, say, for the family of parame-
ters b =

√
3 + 3t, c = 2

√
1 + t and d =

√
3 + 3t. They

span an interval in the physical domain DH whenever
t stays negative, t ∈ (−∞, 0) [14].
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Figure 6. The t−dependence of the real roots zj of
secular equation (18). The collapse at t = 0 is not
destroyed due to the weakness of the coupling to the
environment (β = 1).

At α = 0 the special and easily seen feature of the
latter operator (i.e., matrix) is that at t = 0 (i.e., at the
boundary of its physical domain DH) it ceases to repre-
sent an observable because its eigenvalues degenerate.
Indeed, the vanishing level E4 = 0 separates from the
two degenerate quadruplets of E4+j = −E4−j = 5 with
j = 1, 2, 3, 4. Subsequently, at t > 0, these eigenvalues
get, up to the constantly real level E4 = 0, complex.
This makes the model suitable for quantitative studies
of the properties of the boundary ∂DH [15].

7.2. Boundary ∂DH

The t−independent level E4 = 0 is a schematic sub-
stitute for a generic environment. Each of the two
remaining subsystems remains coupled to this environ-
ment by the coupling or matrix element α. We shall
choose its value as proportional to t via a not too large
real coupling constant β, α = βt.
At the particular choice of β = 1 the descrip-

tion of the boundary ∂DH remains feasible by non-
numerical means yielding the transparent and alge-
braically tractable secular equation

0 = z4 + (−100− 20t+ 2t2)z3

+ (3750 + 500t− 80t2 − 34t3)z2

+ (−62500 + 12500t+ 4810t2 + 360t3 + 158t4)z
+ 390625− 312500t− 23500t2 + 22450t3

− 3221t4 − 126t5, (18)

which may very easily be treated numerically. Ob-
viously, the level E4 = 0 separates while the other
two quadruplets acquire the square-root form E4+j =
−E4−j = √zj for j = 1, 2, 3, 4. Hence, one may pro-
ceed and study the spectrum of z = E2 in full parallel
with our above N = 3 model.

The β = 1 results are sampled in Fig. 6. Inside
the physical domain of t < 0, qualitatively the same
pattern is still obtained even at the perceivably larger
β = 2.73 (cf. Fig. 7). Once we are now getting very
close to the critical value of β ≈ 2.738, the situation
becomes unstable. In the unphysical domain of t > 0,

24.5

25.0

25.5

0.010–0.01–0.02

t

z

Figure 7. The t−dependence of the real roots zj of
secular equation (18) near t = 0 at β = 2.73. The
collapse survives, a partial recovery emerges at negative
t.

24.5
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25.5

0.010–0.01–0.02
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z

Figure 8. The change of the t−dependence of the real
roots zj of secular equation (18) near t = 0 at β = 2.75.

for example, we can spot an anomalous partial de-
complexification of the energies at certain positive
values of parameter t.

At cca β ≈ 2.738 the two separate EP instants of the
degeneracy and complexification/decomplexification of
the energies fuse themselves. Subsequently, a qualita-
tively new pattern emerges. A graphical sample of it
is given in Fig. 8. First of all, the original multiple EP
collapse gets decoupled. This implies that at β = 2.75
as used in the latter picture, the inner two levels de-
generate and complexify at a certain small but safely
negative t = tcrit ≈ −0.004. Due to the solvability of
the model we may conclude that the boundary-curve
∂DH starts moving with parameter β.

8. Non-Hermitian quantum graphs
8.1. Models with point interactions
Another interesting PT -symmetric single-particle
differential-operator Hamiltonian H with the property
H 6= H† in H(F) was proposed in Ref. [22]. The par-
ticle of mass µ = 1/2 was assumed there living on a
finite interval of x ∈ (−L,L). The only nontrivial in-
teraction was chosen as localized at the endpoints and
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characterized by the Robin-type boundary conditions

Ψ′(±L) + iα Ψ(±L) = 0, α > 0,
2Lα/π 6= 1, 2, . . . . (19)

The extreme simplicity of this model opened the way
not only towards the elementary formula for the energy
spectrum,

E0 = α2, En =
(nπ

2L

)2
, n = 1, 2, . . . (20)

but also towards the equally elementary construction
of the complete family of the eligible metrics Θ (cf.,
e.g., Refs. [22–24] for the details).

The solvability as well as the extreme simplicity of
this model proved encouraging in several directions.
In the present context, the mainstream developments
may be seen in the study of its discrete descendants (cf.
the next subsection). However, before turning our at-
tention to the resulting family of the finite-dimensional
crypto-Hermitian problems, let us add a brief remark
on the alternative possibility of a transfer of the present
analysis of the idea of generalized solvability to the
quickly developing field of so-called quantum graphs,
i.e., of systems where the usual underlying concept
of a point particle moving along a real line or inter-
val is generalized in the sense that the single interval
(say, e+ := (0, L)) is replaced by a suitable graph G(q)

composed of q edges ej , j = 0, 1, . . . , q − 1.
The idea still waits for its full understanding and

consistent implementation. In particular, in Ref. [25]
we showed that even for the least complicated equilat-
eral q−pointed star graphs with q > 2 the spectrum
of energies need not remain real anymore, even if one
parallels, most closely, the q = 2 boundary conditions
(19) and even if one does not attach any interaction
to the central vertex. In our present notation this
means that the domain DH of Fig. 1 becomes empty.
In other words, the applicability of this and similar
models remains restricted to classical physics and op-
tics while a correct, widely acceptable quantum-system
interpretation of the manifestly non-Hermitian q > 2
quantum graphs must still be found in the future.

8.2. Discrete lattices
As we already indicated above, one of the most promis-
ing methods for efficiently suppressing some of the
above-mentioned shortcomings of the PT -symmetric
models which are built in an infinite-dimensional
Hilbert space H(F) may be seen in the transition,
say, to the discrete analogues and descendants of
various confining PT -symmetric as well as non-PT -
symmetric potentials [26]. In particular, the most
elementary discrete analogues of the most elemen-
tary end-point-interaction-simulating boundary con-
ditions (19) may be seen in the suitable end-point
non-Hermitian perturbations W (N) of the standard
Hermitian kinetic-energy matrices −4(N), i.e., of the
N by N negative discrete Laplacean Hamiltonians

where mere two diagonals of matrix elements are non-
vanishing, 4(N)

k,k+1 = 4(N)
k+1,k = 1, k = 1, 2, . . . , N − 1.

With this idea in mind, we have already studied,
in [27], the most elementary model with

W (N)(λ) =



0 −λ 0 0 . . . 0

λ 0 0 0
. . .

...

0 0 0
. . . . . . 0

0 0
. . . . . . 0 0

...
. . . . . . 0 0 λ

0 . . . 0 0 −λ 0


. (21)

We succeeded in constructing the complete N -para-
metric family of the physics-determining solutions Θ of
the compatibility constraint (4). In Ref. [28] we then
extended these results to the more general, multipara-
metric boundary-condition-simulated perturbations

W (N)(λ, µ) =



0 −λ 0 0 . . . . . . 0
λ 0 µ 0 . . . . . . 0

0 −µ 0 0
. . .

...

0 0 0 0
. . . . . .

...
...

. . . . . . . . . 0 0 0
...

. . . 0 0 −µ 0
0 . . . . . . 0 µ 0 λ
0 . . . . . . 0 0 −λ 0


(22)

etc. Thus, all of these models may be declared solvable
in the presently proposed sense. At the same time, the
question of the survival of feasibility of these exhaustive
constructions of metrics Θ after transition to nontrivial
discrete quantum graphs remains open [29].

9. Discussion
During transitions from classical to quantum theory
one must often suppress various ambiguities — cf.,
e.g., the well known operator-ordering ambiguity of
Hamiltonians which are, classically, defined as functions
of momentum and position. Moreover, even after we
specify a unique quantum Hamiltonian operator H,
we may still encounter another, less known ambiguity
which is well know, e.g., in nuclear physics [2]. The
mathematical essence of this ambiguity lies in the
freedom of our choice of a sophisticated conjugation
T (S) which maps the standard physical vector space
V (i.e., the space of ket vectors |ψ〉 representing the
admissible quantum states) onto the dual vector space
V ′ of the linear functionals over V. In our present
paper we discussed some of the less well known aspects
of this ambiguity in more detail. Let us now add a
few further comments on the current quantum-model
building practice.

First of all, let us recollect that one often postulates
a point-particle (or point-quasi-particle) nature and
background of the generic quantum models. Thus,
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in spite of the existence of at least nine alternative
formulations of the abstract quantum mechanics as
listed, by Styer et al, in their 2002 concise review paper
[30], a hidden reference to the wave function ψ(x)
which defines the probability density and which lives in
some “friendly” Hilbert space (say, in H(F) = L2(Rd))
survives, more or less explicitly, in the large majority of
our conceptual as well as methological considerations.
A true paradox is that the simultaneous choice of

the friendly Hilbert space H(F) and of some equally
friendly differential-operator generator H = 4+ V (x)
of the time evolution encountered just a very rare
critical opposition in the literature [31]. The overall
paradigm only started changing when the nuclear
physicists imagined that the costs of keeping the Hilbert
space H(F) (or, more explicitly, its inner product)
unchanged might prove too high, say, during variational
calculations [2]. Anyhow, the ultimate collapse of the
old paradigm came shortly after the publication of
the Bender’s and Boettcher’s letter [12] in which, for
certain friendly ODE Hamiltonians H = 4+ V (x) the
traditional choice of space H(F) = L2(R) was found
unnecessarily over-restrictive (the whole story may be
found described in [4]).
The net result of the new developments may be

summarized as an acceptability of a less restricted input
dynamical information about the system. In other
words, the use of the friendly spaceH(F) in combination
with a friendly Hamiltonian H = H† has been found
to be a theoretician’s luxury. The need arose for a less
restrictive class of standard Hilbert spaces H(S) which
would differ from their “false” predecessor H(F) by a
nontrivial inner-product metric Θ 6= I.
One need not even abandon the most common a

priori selection of the friendly Hilbert space H(F) of
the ket vectors |ψ〉 with their special Dirac duals (i.e.,
roughly speaking, with the transposed and complex
conjugate bra vectors 〈ψ|) yielding the Dirac’s inner
product 〈ψ1|ψ2〉 = 〈ψ1|ψ2〉(F). What is new is only
that such a pre-selected, F -superscripted Hilbert space
need not necessarily retain the usual probabilistic
interpretation.

One acquires an enhanced freedom of working with
a sufficiently friendly form of the input Hamiltonian H ,
checking solely the reality of its spectrum. Thus, one
is allowed to admit that H 6= H† in H(F). One must
only introduce, on some independent initial heuristic
grounds, the amended Hilbert space H(S). For such a
purpose it is sufficient to keep the same ket-vector space
and just to endow it with some sufficiently general and
Hamiltonian-adapted (i.e., Hamiltonian-Hermitizing)
inner product (1) [2]. This is the very core of innovation.
In the physical Hilbert space H(S) the unitarity of the
evolution of the system must remain guaranteed, as
usual, by the Hermiticity of our Hamiltonian in this
space, i.e., by a hidden Hermiticity condition

H = Θ−1H†Θ := H‡ (23)

alias crypto-Hermititicity condition [1]. In the special

case of finite matrices one speaks about the quasi-
Hermiticity condition. Unfortunately, this name be-
comes ambiguous and potentially misleading whenever
one starts contemplating certain sufficiently wild oper-
ators in general Hilbert spaces [16].

It is rarely emphasized (as we did in [32]) that the
choice of the metric remains an inseparable part of our
model-building duty even if our Hamiltonian happens
to be Hermitian, incidentally, also in the unphysical
initial Hilbert space H(F). Irrespective of the Hermitic-
ity or non-Hermiticity of H in auxiliary H(F), one
must address the problem of the independence of the
dynamical input information carried by the metric Θ.
Only the simultaneous specification of the operator
pair of H and Θ connected by constraint (23) defines
physical predictions in consistent manner. In this sense,
the concept of solvability must necessarily involve also
the simplicity of Θ.
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