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Abstract. This paper aims at analyzing the effect of velocity slip on the behavior of a magnetic fluid
based infinitely short hydrodynamic slider bearing. Solving the Reynolds’ equation, the expression for
pressure distribution is obtained. In turn, this leads to the calculation of the load carrying capacity.
Further, the friction is also computed. It is observed that the magnetization paves the way for an
overall improved performance of the bearing system. However the magnetic fluid lubricant fails to
alter the friction. It is established that the slip parameter needs to be kept at minimum to achieve
better performance of the bearing system, although the effect of the slip parameter on the load carrying
capacity is in most situations, negligible. It is found that for large values of the aspect ratio, the
effect of slip is increasingly significant. Of course, the aspect ratio plays a crucial role in this improved
performance. Lastly, it is established that the bearing can support a load even in the absence of flow,
which does not happen in the case of a conventional lubricant.
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1. Introduction
Pinkus and Sternlicht [1] presented an analysis for the
hydrodynamic lubrication of slider bearings. Exact
solutions of the Reynolds’ equation for slider bear-
ings with several film geometries have been treated
in numerous books and research papers (Cameron [2],
Archibald [3], Lord Rayleigh [4],Charnes and Saibel
[5], Basu, Sengupta and Ahuja [6], Majumdar [7],
Hamrock [8], Gross, Matsch, Castelli, Eshel, Vohr
and Wildmann [9], Prakash and Vij [10]). Patel and
Gupta [11] considered the effect of slip velocity on the
hydrodynamic lubrication of a porous slider bearing.
They showed that velocity slip decreased the load
carrying capacity.

All these above studies considered conventional lu-
bricants. Agrawal [12] dealt with the configuration
of Prakash and Vij [10] with a magnetic fluid lubri-
cant, and found that the performance was better than
with a conventional lubricant. Bhat and Deheri [13]
modified and extended the analysis of Agrawal [12] by
considering a magnetic fluid based porous composite
slider bearing with its slider consisting of an inclined
pad and a flat pad. Bhat and Deheri established that
the magnetic fluid increased the load carrying capac-
ity, did not affect the friction, decreased the coefficient
of friction, and shifted the centre of pressure towards
the inlet. Patel et al. [14] analyzed the performance
of a magnetic fluid based infinitely short bearing. It
was shown that the magnetization sharply increased
the load carrying capacity. The friction remained
unchanged due to magnetization. Prajapati [15] in-
vestigated the performance of a magnetic fluid based
porous inclined slider bearing with velocity slip, and
concluded that the magnetic fluid lubricant minimized
the negative effect of the velocity slip.

Figure 1. Configuration of the bearing system.

Recently, hydrodynamic lubrication of Short bear-
ings have been subjected to investigations in Patel
et al. [23], Vakis and Polycarpous [24] and Patel and
Deheri [25].
The present study discusses the performance of a

magnetic fluid based short bearing system with slip
effect while the magnitude of the magnetic field is
represented by a cosine function.

2. Analysis
Figure 1 consists of the configuration of the bearing
system, which is infinitely short in the Z-direction.
The slider runs with uniform velocity u in the X-
direction. The length of the bearing is L and the
breadth B is in the Z-direction, where B � L. The
pressure gradient ∂p

∂x can be neglected because the
pressure gradient ∂p

∂z is much larger as a consequence
of B being very small. The magnetic fluid is a suspen-
sion of solid magnetic particles approximately 3–10
nanometers in diameter stabilized by a surfactant in a
liquid carrier. With the help of an external magnetic
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field these fluids can be confined, positioned, shaped
and controlled as desired. For details, see Bhat [22].
The magnetic field is taken to be oblique to the stator,
as in Agrawal [12]. Following Bhat [22] and Prajapati
[16], the magnetic field is taken as

H =
(
H(z) cosφ, 0, H(z) sinφ

)
; φ = φ(x, z), (1)

where the inclination angle of the magnetic field is
described from the partial differential equation

cotφ∂φ
∂z

+ ∂φ

∂x
= 1 1

H

dH
dz . (2)

In view of the deliberation carried out in Prajapati [16],
Verma [17] and Bhat and Deheri [18]the magnitude
of the magnetic field is assumed to be of the form

H2 = kB2 cos πz
B
,

where k is chosen to suit the dimensions of both sides
and the strength of the magnetic field. Under the
usual assumptions of hydrodynamic lubrication, and
employing the Beavers and Joseph [19] model for slip,
the governing Reynolds’ equation (Agrawal [12], Pra-
japati [16], Patel et al.[14]) turns out to be

d2

dz2

(
p− µ0µH

2

2

)
= 6µu(2 + sh)

h3(4 + sh)
dh
dx, (3)

where µ0 is the magnetic susceptibility, µ is free space
permeability, µ is lubricant viscosity and an m is the
aspect ratio. The associated boundary conditions are

p = 0 at z = ±B

2 and dp
dz = 0 at z = 0. (4)

The expression for pressure distribution is obtained by
integrating Equation (3) with respect to the boundary
condition (4), as

p = µ0µkB
2

2 cos πz
B

− 3µum
Lh2

2t
3

2 + sh2

4 + sh2

2 + 2sh2t+ s2h2
2t

2

(1 + sh2t)2

(
z2 − B2

4

)
,

(5)

where t = 1 +m(1 − x/L), while the aspect ratio m
comes from m = (h1 − h2)/h2.
Introduction of the dimensionless quantities

X = x

L
, P = h3

2p

µuB2 , µ∗ = −h3
2kµ0µ

µu
,

Y = y

h
, Z = z

B
, s = sh2

leads to the expression for the non-dimensional pres-
sure distribution, obtained as

P = µ∗

2 cosπZ − 3mh2

Lt3
2 + st

4 + st

2 + 2sts2t2

(1 + st)2

(
Z2 − 1

4

)
.

(6)

Then the load carrying capacity per unit width is
determined from

w = µ0µkB
2L

π

+ µuB2

2h2
2

(
19
16s

2h2
2 ln(m+ 1) − 3

4sh2
m

m+ 1

+ 1
2
m(m+ 2)
(m+ 1)2 + 5

144s
2h2

2 ln 4 + sh2(m+ 1)
4 + sh2

− 11
9 s

2h2
2 ln 1 + sh2(m+ 1)

1 + sh2

− 1
3s

2h2
2

( 1
1 + sh2

− 1
1 + sh2(m+ 1)

))
. (7)

Thus, the dimensionless load carrying capacity of the
bearing system comes out to be

W = h3
2wπ

µuB4 = π

∫ 1/2

−1/2

∫ 1

0
P (X,Z) dX dZ

= µ∗L

Bπ
+ h2

2B

(
19
16s

2 ln(m+ 1) − 3
4s

m

m+ 1

+ 1
2
m(m+ 2)
(m+ 1)2 + 5

144s
2 ln 4 + s(m+ 1)

4 + s

− 11
9 s

2 ln 1 + s(m+ 1)
1 + s

− 1
3s

2
( 1

1 + s
− 1

1 + s(m+ 1)

))
. (8)

The frictional force Fper unit width of the lower plane
of the moving plate is obtained as

F =
∫ 1/2

−1/2
τ dZ, (9)

where
τ = h2

µu
τ (10)

is the non-dimensional shearing stress, while

τ = dp
dz

(
y − h

2

)
+ µu

h
. (11)

A little computation indicates that

τ = µ∗πB

2 sin(πZ)T 2 + sT

1 + sT

(
Y − 1

2

)
− 6mh2Z

L

(2 + sT )2(2 + 2sT + s2T 2)
T (1 + sT )3(4 + sT )

(
Y − 1

2

)
+ 1 + sT

T (2 + sT ) , (12)

where T = 1 +m(1 −X).
At Y = 0 (moving plate), one computes that

τ = µ∗πB

4 sin(πZ)T 2 + sT

1 + sT

(
Y − 1

2

)
− 3mh2Z

L

(2 + sT )2(2 + 2sT + s2T 2)
T (1 + sT )3(4 + sT )

(
Y − 1

2

)
+ 1 + sT

T (2 + sT ) . (13)
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Figure 2. Variation of load carrying capacity with
respect to µ∗ and m.

Figure 3. Variation of load carrying capacity with
respect to µ∗ and s.

Therefore, the friction force in non-dimensional form
at the moving plate is calculated as

F0 = 1 + sT

T (2 + sT ) . (14)

Next, at Y = 1 (fixed plate), one concludes that

τ = µ∗πB

4 sin(πZ)T 2 + sT

1 + sT

(
Y − 1

2

)
− 3mh2Z

L

(2 + sT )2(2 + 2sT + s2T 2)
T (1 + sT )3(4 + sT )

(
Y − 1

2

)
+ 1 + sT

T (2 + sT ) , (15)

which transforms to the non dimensional form as

F1 = 1 + sT

T (2 + sT ) . (16)

It is clearly seen from Equations (14) and (16) that

F0 = F1. (17)

3. Results and Discussion
Equations (6) and (8), respectively, present the varia-
tion of non-dimensional pressure distribution and load
carrying capacity, while the frictional force is deter-
mined from Equation (9). Comparison with the con-
ventional lubricant indicates that the non-dimensional

Figure 4. Variation of load carrying capacity with
respect to µ∗ and L/h2.

Figure 5. Variation of load carrying capacity with
respect to µ∗ and h2/B.

pressure increases by

µ∗ cosπZ
2 ,

while the load carrying capacity enhances by

µ∗(L/h2)
B/h2

.

For lower values of the slip parameter, the load
carrying capacity estimated here is approximately
three times more than the load calculated from the
investigation of Patel [20]. It is interesting to note
that the friction remain unchanged in spite of the
presence of slip, which is clear from Equation (17).
However, for large values of the aspect ratio, the effect
of slip on friction is significant.
The distribution of load carrying capacity with re-

spect to magnetization µ∗ for various values of m, s,
L/h2 and h2/B is presented in Figures 2–5. All these
figures make it clear that the load carrying capacity
increases due to magnetization. Further, the load
carrying capacity increases for increasing values of m,
L/h2 and h2/B while it decreases with increasing slip
velocity values. However, the effect of m and s on
µ∗ is negligible so far as the load carrying capacity is
concerned. (Figures 2 and 3).
Figures 6–8 show the variation of load carrying

capacity with respect to slip velocity s for different
values of m, L/h2 and h2/B, respectively. It is clearly
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Figure 6. Variation of load carrying capacity with
respect to s and m.

Figure 7. Variation of load carrying capacity with
respect to s and L/h2.

seen from these figures that the load carrying capacity
decreases with increasing slip velocity values. However,
the decrease remains nominal, as can be seen from
Figures 6–8.

Figures 9 and 10 deal with the distribution of load
carrying capacity with respect to m. The load car-
rying capacity increases with increasing values of m.
Figure 11 confirms that the rate of increase in load
carrying capacity with respect to L/h2 increases with
increasing values of h2/B. Thus, the combined effect
of the two ratios L/h2 and h2/B is significantly pos-
itive. From Figure 12, it is found that the friction
decreases with respect to the aspect ratio, whereas it
increases with increasing slip parameter values.

4. Conclusions
This paper underlines that from the point of view life
time of bearing, the slip parameter needs to be put
at a minimum value. A comparison of our paper with
the discussions of Patel et al. [21] indicates that the
load carrying capacity remains almost identical for
lower aspect ratio values. The industrial importance
of this work is that it offers an additional degree of
freedom from the design point of view, in terms of
the form of the magnitude of the magnetic field. It is
suggested that the adverse effect of slip velocity can
be compensated to a large extent by the magnetic
fluid lubricant, when a suitable aspect ratio value is
chosen.

Figure 8. Variation of load carrying capacity with
respect to s and h2/B.

Figure 9. Variation of load carrying capacity with
respect to m and L/h2.

List of symbols
h Fluid film thickness at any point [mm]
m Aspect ratio
p Lubricant pressure [N/mm2]
u Uniform velocity in X-direction
w Load carrying capacity [N]
B Breadth of the bearing [mm]
F Frictional force
L Length of the bearing [mm]
P Dimensionless pressure
W Non-dimensional load carrying capacity
h1 Maximum film thickness [mm]
h2 Minimum film thickness [mm]
F Dimensionless frictional force
F0 Non-dimensional frictional force (moving plate)
F1 Non-dimensional frictional force (fixed plate)
H Magnitude of the magnetic field
H Magnetic field
φ Inclination angle of the magnetic field
µ Lubricant viscosity [N s/mm2]
τ Shear stress [N/mm2]
µ0 Magnetic susceptibility
µ Free space permeability
µ∗ Dimensionless magnetization parameter
τ Dimensionless shear stress
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