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Abstract. Mechanically ventilated patients require appropriate settings of respiratory control
variables to maintain acceptable gas exchange. To control the carbon dioxide (CO2) level effectively
and automatically, system identification based on a human subject was performed using a linear affine
model and a nonlinear Hammerstein structure. Subsequently, a robust controller was designed using the
H∞ loop-shaping approach, which synthesizes the optimal controller based on a specific objective by
achieving stability with guaranteed performance. For demonstration purposes, the closed-loop control
ventilation system was successfully tested in a human volunteer. The experimental results indicate that
the blood CO2 level may indeed be controlled noninvasively by measuring end-tidal CO2 from expired
air. Keeping the limited amount of experimental data in mind, we conclude that H∞ loop-shaping may
be a promising technique for control of mechanical ventilation in patients with respiratory insufficiency.
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1. Introduction
In an intensive care unit, patients with respiratory
insufficiency due to lung diseases, injury or undergo-
ing a surgical procedure, may require support from
a mechanical ventilator to maintain appropriate gas
exchange: oxygenation and carbon dioxide (CO2) elim-
ination from blood circulation [1]. Concerning CO2
exchange, if an abnormal value of CO2 pressure in
arterial blood (PaCO2) persists for a long period of
time, this can cause an imbalance of the pH value,
which may be life threatening. Therefore, it is es-
sential to regulate PaCO2 during ventilation therapy
in order to avoid both hypercapnia and hypocapnia.
Assuming good diffusion conditions (as in a healthy
lung), PaCO2 can be approximated by end-tidal CO2
(etCO2) or CO2 partial pressure at end of expiration,
which can be noninvasively measured from the exhaled
air.
Currently, no accurate mathematical model of the

cardiopulmonary system is available that allows to
estimate etCO2. Therefore, in this work, we pro-
pose to define a model structure and to parametrize
this model using system identification [2]. To this
end, we have simplified the problem and assumed
a single-input single-output (SISO) system. Minute
ventilation (MV ; in L/min) was used to control the
value of etCO2 [3–7]. To identify the parameters of
a Hammerstein model, our results from a grey box
identification are presented. For this, we assumed a
nonlinear steady-state (or static) characteristic of the

controlled plant (the patient) with, in addition, some
linear time dynamics. Note that the nonlinear Ham-
merstein model is composed of a serial interconnection
between a linear time-invariant system and a static
nonlinearity; this is also classified as a block-oriented
structure [8, 9]. The advantage of the block-oriented
structure is that it is able to represent input and
output multiplicities; this makes it well suited for
application on a cardiopulmonary system, due to its
similar behavior of input and output multiplicities [10].
In addition, a linear affine model was identified in or-
der to compare this with the nonlinear Hammerstein
modeling results.
After model validation, a robust controller was

designed by an H∞ loop-shaping approach [11, 12].
Note that this method guarantees closed-loop stability
whilst offering performance and robustness trade-offs
[13]. Our goal for the H∞ loop-shaping approach was
to tune the singular value of the open-loop gain or
the open-loop transfer function gain, to increase the
bandwidth of the system and to eliminate steady-state
errors. The advantage of this method is to add perfor-
mance possibilities while obtaining an exact solution
in the H∞ optimal sense. For this design method, we
present simulation results when evaluating the control
performance based on various conditions of model
uncertainty.

Finally, a patient-in-the-loop ventilation system was
connected to a human volunteer (first author) to test
the etCO2 control algorithm in vivo.

The remainder of this article is organized as follows.
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Figure 1. Configuration of the system for closed-loop
ventilation.

Section 2 describes a unified approach for system
identification including a physiological description;
here, all the models are parametrized and validated.
Section 3 presents the robust control design based on
the H∞ loop-shaping technique and the simulation
results of the controller under various conditions of
model uncertainty. Section 4 presents a discussion
of this work and the conclusions are presented in
Section 5.

2. System modeling
2.1. System configuration
The proposed closed-loop system is composed of a
medical panel PC for process monitoring, user inter-
face and data storage, a mechanical ventilator (VEN-
TIlogic LS, Weinmann Geräte für Medizin GmbH,
Germany), a capnograph (CO2SMO+, Philips GmbH,
Germany) for etCO2 monitoring, a MicroAutoBox
II dSpace control unit, and two ARM-based micro-
controllers. The system configuration is presented in
Figure 1. The data communication protocol was de-
signed based on the CAN (Controller Area Network)
protocol. CAN-Bus is a serial fieldbus, which allows
additional devices to be connected to the system ar-
chitecture using this topological arrangement. A data
transfer rate of 1Mbit/s can be obtained and collision
avoidance between the messages can be achieved for
all connected devices, based on priority assignment.
Therefore, the proposed closed-loop system is suit-
able for real-time automatic control of mechanical
ventilation.

2.2. Static nonlinearity
To serve as an example, system identification was
conducted based on one male volunteer with healthy
homogeneous lungs and a body mass index within
normal range (i.e. 23.3 kg/m2). This person was con-
nected to a mechanical ventilator, which was operating
in pressure-controlled mode. All ventilation settings
were manually adjusted to extract cardiopulmonary
information from the subject.
Based on the static characteristics of the patient,

etCO2 is a nonlinear function of MV [4]. Its static

8 10 12 14 16 18 20 22 24
20

25

30

35

MV [L/min]

e
tC

O
2

[m
m

H
g
]

Measured data from a human subject

Estimated curve of the relationship

Figure 2. Static nonlinearity between etCO2 and MV .

nonlinearity is the so-called “metabolic hyperbola”
(Figure 2). By extracting CO2 information, MV input
was increased stepwise from 10L/min to 25L/min,
and etCO2 was measured at steady state. We could
indeed confirm that etCO2 is a decreasing function
in terms of MV input at steady state. Hence, the
more MV applied to the lungs, the less etCO2 can
be measured from the subject. This relationship is
important and can be employed for controlling etCO2
with MV input.

A mathematical description of the nonlinearity may
approximate the nonlinearity as a parabolic equation
as provided in (1).

etCO2 = N [MV ] = a ·MV 2 + b ·MV + c (1)

where N [MV ] denotes a nonlinear function of MV .
In this particular example, a = 0.05, b = −2.55 and
c = 52.80 are the best parameters according to a
least-squares fit.

2.3. Linear affine model
As an initial estimation, a simple dynamic model can
be applied to complex input-output relationship of
the system in order to evaluate to what extent such a
simple model can represent the real system (Figure 3).
Such an affine model is formulated by a linear combi-
nation form of primitive variables, provided in (2):

y(k) = yo +
p∑

i=1
a(i) · y(k− i) +

q∑
j=1

b(j) ·u(k− j) (2)

where y(k) represents etCO2 at the sampling point
k, and u(k) denotes the input ∆P at the sampling k.
The sampling time for this study was 4.28 s. Also, p
and q are finite order parameters with p ≥ q and yo

representing a constant so called offset.
The unknown parameters (yo, a(i) and b(j)) can be

estimated by using a least-squares algorithm based on
the input and output measurements. The following
algorithm is used to estimate the unknown parameters.
According to the experimental data and the model
structure from (2) for the linear affine model, it can
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Figure 3. Input-output relationship used for system
identification with the results of model identification.

be expressed in terms of a vector and matrices, as
in (3):

Y = X · β + ε, (3)

where

Y =
[
y(ko + 1) y(ko + 2) · · · y(M)

]T
,

XT =



1 1 · · · 1
y(ko) y(ko + 1) · · · y(M − 1)
...

...
...

y(ko − p) y(ko + 1− p) · · · y(M − 1− p)
u(ko) u(ko + 1) · · · u(M − 1)

...
...

...
u(ko − q) u(ko + 1− q) · · · u(M − 1− q)


,

β =
[
yo a1 · · · ap b1 · · · bp

]T
for ko ≥ p and ko ≥ q and ε is an unknown disturbance
vector. The vector β or the unknown parameters can
then be estimated using the ordinary least-squares
algorithm that minimizes the sum of squared errors
provided in (4) [2]:

β = (XT ·X)−1 ·XT ·Y. (4)

In order to relax the muscles involved in respiratory
breathing, a fixed respiratory rate (RR) is introduced
at 14 bpm to allow the subject to minimize work of
breathing [5]. Since the mechanical ventilator was
set to pressure-controlled mode, MV was obtained
by a multiplication of tidal volume (VT ) and respira-
tory rate (RR). Because of the fixed RR of 14 bpm,
the input for this particular system is transformed
from MV to the difference in the driving pressure
(∆P = PIP −PEEP) between inspiration and expira-
tion pressure, and has a direct influence on VT .

2.4. Nonlinear Hammerstein model
Providing a representation of signal flow using a block-
oriented structure, the Hammerstein model comprises
a static nonlinearity N [·] at the input u(k) cascaded
with a linear dynamic model H(z):

N[•] H(z)

u(k) v(k) y(k)

The static nonlinearity maps the input u(k) into
the intermediate variable v(k) (see (5)) and the linear
dynamic model maps the intermediate variable v(k)
into the output y(k) (see (6)). The model can be
represented by

v(k) = N [u(k)], (5)

y(k) =
p∑

i=1
a(i) · y(k − i) +

q∑
j=1

b(j) · v(k − j). (6)

Rearranging (5) and (6), the Hammerstein model
can be described as shown in (7).

y(k) =
p∑

i=1
a(i) · y(k − i) +

q∑
j=1

b(j) ·N [u(k − j)] (7)

It can be seen from (7) that the Hammerstein model
is very similar to the linear dynamic model. Because
the qualitative behavior of the transient response is
entirely determined by the discrete transfer function
of the linear subsystem H(z), it can be used as an
alternative to the linear model. This model can ex-
hibit input multiplicities if the static nonlinearity is
in the form of input multiplicities. According to the
experimental data and the model structure, the un-
known parameters (a(i) and b(j)) can be estimated
by a constrained least-squares algorithm, as provided
in (3) and (4).

2.5. Evaluation of model structure
Both the linear and nonlinear model structures are
used to describe this system. The performance index
used in our evaluation was obtained by root mean
square error (RMSE). Table 1 presents the results of
the comparisons, divided into an estimated dataset
and a validated dataset for the different model struc-
tures. Based on the validation dataset, the first-order
Hammerstein model provides the best result of all
the listed models. Nevertheless, the first-order lin-
ear model also offers the best result of the RMSE
evaluation of all the linear models.
In addition, qualitative comparison of the selected

models is provided in Figure 3. In the following sec-
tion, the design of the H∞ controller and simulation re-
sults are conducted using the first-order linear model.
It should be emphasized that capnography has an
accuracy of ±2mmHg for values in the 0–40mmHg
range, ±5 % for values in the 41–70mmHg range, and
±8 % for values in the 71–150mmHg range [14].
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Estimated Validated
RMSE RMSE

1st Linear Affine 2.2475 2.2880
2nd Linear Affine 2.2116 2.2988
2nd Affine w. zero 2.1597 2.4093
1st Hammerstein 2.1988 1.6709
2nd Hammerstein 2.1680 1.7804
2nd Ham. w. zero 2.1351 1.8085

Table 1. Root mean squared error (RMSE) evalua-
tion of the different model structures.
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Figure 4. The H∞ control structure with left coprime
factorization of a plant G.

3. Design of robust controller
3.1. Loop-shaping design using H∞
This method combines the principle of Bode’s sensitiv-
ity integral [15] and the H∞ optimization technique
by minimizing the H∞ norm in the presence of uncer-
tainty. In designing the H∞ controller, both stability
and performance are taken into account, with bounded
differences between the nominal model and the real
nonlinear plant.
Given a nominal discrete-time model of a plant G,

it can be represented using a normalized left coprime
factorization (LCF)

G = M−1 ·N, (8)

where M and N are coprime matrices in RH∞ (Fig-
ure 4):
A perturbed model associated with the LCF rep-

resentation of the plant G is given by (9), where
perturbations are assumed to be bounded, is given by

Gp = (M + ∆M)−1 · (N + ∆N),∥∥∆M ∆N
∥∥
∞ < ε (9)

The objective is to find a robust controller K that
stabilizes Gp and minimizes (10).

γmin =
∥∥∥∥K(I −GK)−1M−1

(I −GK)−1M−1

∥∥∥∥
∞

(10)

The solution of this H∞ norm problem can be
solved using the algorithm proposed by McFarlane
and Glover [11]. Define [A,B,C, 0] to be a state space
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Figure 5. Shaping the singular value of the single-
input single-output (SISO) system.

minimal realization of plant G. Then, the subopti-
mal H∞ controller K can be computed by discrete
algebraic Riccati equations [16].
The loop-shaping objective is to design a robust

controller K, so that σ(GK) � 1 or |GK(jω)| � 1
(for a case of SISO) at low frequencies (minimizing
the effect of output disturbances) and σ(GK)� 1 or
|GK(jω)| � 1 at high frequencies (minimizing the
effect of sensor noise and providing robustness for
additional uncertainty). The singular value of the
open loop gain GK is shaped based on this design
criterion.

Based on the singular value of the plant in Figure 5,
the integral action has been chosen to ensure zero
steady-state error. In addition, the cut-off frequency
is designed to be 0.28 rad/s in comparison with a very
low cut-off frequency at 0.03 rad/s of the plant. In
this way, the bandwidth is increased by a factor of
approximately 10 times. Referring to [11], γ = 1.86
or ε = 0.5376 indicates the allowable proportional
uncertainty in N and M of approximately 50% in the
crossover frequency range of the shaped plant.

3.2. Step response simulation
A step response, shown in Figure 6, represents the con-
trol performance of the H∞ loop-shaping controller for
both the linear affine and the nonlinear Hammerstein
models. The etCO2 is controlled to have a target of
34mmHg before t = 0 s and is forced to 35mmHg after
t = 0 s. In both models, rise time is 14 s and settling
time is within 60 s. The response has no steady-state
error. The robust H∞ loop-shaping controller gives a
good transient and steady-state performance for the
linear affine and the nonlinear Hammerstein models.
For all model parameters, a satisfied step response
can also be achieved with a parameter uncertainty
of about 12%. Therefore, the controller is robust in
coping with model and parameter uncertainty, and
with disturbance.
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Figure 7. Details of controller performance obtained
from a human volunteer.

3.3. Evaluation of closed-loop control
ventilation

After simulating the controller performance, closed-
loop control ventilation is implemented and tested
on a human volunteer. The result of the control
performance is presented in Figure 7.
Robustness with a step response can be achieved

for the required etCO2 at 35mmHg under real dis-
turbance and measurement uncertainty. Within ap-
proximately 60 s, the target etCO2 is satisfied. The
response lies in an acceptable range for clinical ap-
plication. It should be emphasized that a relatively
good performance can be obtained by the robust H∞
loop-shaping controller.

4. Discussion
For an abnormal lung condition, like acute respiratory
distress syndrome (ARDS), etCO2 does not corre-
spond to PaCO2 and therefore invasive measurement
of PaCO2 is required. Therefore, our focus of iden-
tification and control design for etCO2 is only valid
for patients after treatment with the Open Lung re-
cruitment maneuver [17], or for patients whose etCO2
reading appropriately reflects the true PaCO2 (as, for
example, in chronic obstructive pulmonary disease)
[18]. In such cases, the mean value of CO2 pressure
in arterial blood (PaCO2) is approximately 9mmHg
higher than the value of etCO2 and the required value
of etCO2 should be adapted based on the calibration
with PaCO2, which can be obtained from blood gas

analysis.
The second-order model with one zero is correlated

to the pharmacological two-compartment model as
proposed in [7]. The etCO2 represents the output from
the lung compartment and is one of the state variables
in the model. Zero position relies on gas transport
from tissues to the lung. Our findings of poles and
zero positions based on animal experiments correlate
well with the findings derived from 18 patients [7].
One pole is located near the origin of the unit circle
and another pole is near the point (1, 0) in the unit
circle.

The identification parameters are subject to measur-
ing errors due to the limitations of capnography: its
accuracy for etCO2 monitoring is ±2mmHg for the 0–
40mmHg range, ±5% for the 41–70mmHg range, and
±8% for the 71–150mmHg range, and the resolution
is 1mmHg [14]. Therefore, the identified parameters
will not perfectly reflect the underlying parameters
of the plant. In other words, parameter uncertainty
also exists because of the limitations related to the
accuracy and resolution of the measuring device itself.
Considering the input applied to the system, MV

shows a better result compared to inverse minute
ventilation (IMV ) for both the linear affine and the
Hammerstein model. The design problem is simplified
to be a SISO system by regarding MV as the input
and etCO2 as the output. In a pressure-controlled
ventilation mode, tidal volume cannot be directly ad-
justed. Thus, a pressure difference should be changed
in order to meet the required tidal volume.

The Hammerstein model provided better numerical
results compared with the affine model, especially
for the validation dataset (Table 1). Note that the
Hammerstein model has been successfully applied in
several other biomedical applications [19], including
the stretch reflex EMG [20] and heart rate regulation
[21]. In our clinical application, the complex nonlinear
cardiopulmonary system can be better modeled by a
Hammerstein model than by an affine model. It should
be noted that the block-oriented NARMAX models
[8], which offer a modeling for output multiplicities,
did not give acceptable results when they were tested;
therefore, those results are not presented or discussed
here.

Regarding patient safety, MV that is too low leads
to low oxygenation and a risk of mortality. On the
other hand, extremely high MV carries a high risk of
trauma and a possibility of lung damage. Thus, ac-
tuator saturation should be introduced in our system
design with the aid of an anti-windup technique and
should be considered for future research work.

5. Conclusion
In a clinical application, etCO2 is required to be
feedback-controlled to a certain value to minimize
the risk of hypercapnia or hypocapnia. To realize
this task, we propose a model-based approach by
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identifying the model parameters of a complex non-
linear cardiopulmonary system using a block-oriented
structure with the linear affine and the Hammerstein
models. A robust control design was implemented
using the H∞ loop-shaping approach based on the
derived affine model. The simulation results indicate
a good control performance of the H∞ loop-shaping
controller for both the linear affine and the nonlinear
Hammerstein models, including possible parameter
variations up to 12%. Finally, for demonstration pur-
poses, the controller was tested in a task to control
etCO2 in a healthy volunteer and a positive result was
achieved with the robust H∞ loop-shaping controller.
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