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Abstract. This paper reports a study of the semiclassical asymptotic behavior of the eigenvalues of
some nonself-adjoint operators that are important for applications. These operators are the Schrödinger
operator with complex periodic potential and the operator of induction. It turns out that the asymptotics
of the spectrum can be calculated using the quantization conditions. These can be represented as
the condition that the integrals of a holomorphic form over the cycles on the corresponding complex
Lagrangian manifold, which is a Riemann surface of constant energy, are integers. In contrast to the
real case (the Bohr–Sommerfeld–Maslov formulas), in order to calculate a chosen spectral series, it
is sufficient to assume that the integral over only one of the cycles takes integer values, and different
cycles determine different parts of the spectrum.
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1. Introduction
One of the main problems of the semiclassical the-
ory (see, for example, [1]) is the description of the
asymptotic behavior of the spectrum of operators of
the form Ĥ = H(x,−ıh ∂

∂x ), h→ 0. In this case, the
problem can naturally be divided into two subprob-
lems, namely:
(1.) to solve the spectral equation approximately, i.e.,
to find numbers λ and functions ψ, satisfying the
following equation for some N > 1:

Ĥψ = λψ +O(hN ); (1)

(2.) to choose numbers of the form λ that approach
spectral points of the operator Ĥ, i.e., to choose
points λ such that

|λ− λ0| = O(hN ) (2)

for some point λ0 of the spectrum of operator Ĥ.
If operator Ĥ is self-adjoint, then the estimate (2)

automatically follows from equation (1) (see, e.g., [1–
3]). At the same time, the first problem is highly
nontrivial and is related to the study of invariant sets
of the corresponding classical Hamiltonian system.
Recall how to solve this problem (1) in the integrable
case. Let

H(x, p) : R2n → R

be a smooth function, and let the Hamiltonian system
defined by function H be Liouville integrable. Let
f1 = H, . . . , fn be the commuting first integrals; con-
sider the domain of the phase space smoothly fibered
into Liouville tori Λ which are the compact connected
components of the common level sets of the form

fj = cj . We assume that the Weyl operator Ĥ is
self-adjoint in L2(Rnx). The following theorem is due
to V. P. Maslov.

Theorem 1. Suppose that a Liouville torus Λ sat-
isfies the following conditions (the so-called Bohr–
Sommerfeld–Maslov quantization rules, see [1, 2, 4, 5]):

1
2πh

∫
γ

(p, dx) = m+ µ(γ)
4 , (3)

where m = O(1/h) ∈ Z, γ is an arbitrary cycle on Λ,
and µ(γ) is the Maslov index of the cycle. Then there
is a function ψ ∈ L2(Rn), ‖ψ‖ = 1, such that

Ĥψ = λψ +O(h2), λ = H|Λ.

Remark 1. The function ψ mentioned in the theorem
can be described in a computable way, namely, it is
of the form K(1), where K stands for the Maslov
canonical operator on the Liouville torus Λ. Integer
m can be chosen in the form m = [1/h]int+m0, where
[1/h]int stands for the integral part of the real number
1/h and m0 does not depend on h.
Remark 2. As was already noted above, it follows
automatically from the statement of the theorem that
the point λ is at a distance of the order of O(h2) from
the spectrum of operator Ĥ.
Remark 3. We stress that the topological condi-
tion (1.3) must be satisfied for all cycles of torus
Λ (in other words, the quantization condition is the
condition that the cohomology class

1
2πh [θ]− 1

4 [µ]

is integer, where [θ] stands for the class of the form
(p, dx) and [µ] for the Maslov class).
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Remark 4. In action–angle variables (I1, . . . ,
In, ϕ1, . . . , ϕn), the quantization conditions and for-
mula for the spectrum have a simple form (see e.g. [2])

Ij = h
(
mj + µj

4

)
, λ = H(I1, . . . , In).

The nonself-adjoint case has been investigated less,
and quite incompletely; however, spectral problems
for nonself-adjoint operators arise in many important
physical applications (like the theory of hydrodynamic
stability, a description of magnetic fields of the Earth
and of galaxies, PT -symmetric quantum theory, sta-
tistical mechanics of Coulomb gases, and many other
problems; see, for example, [6–11]).
In our paper, we consider two classes of nonself-

adjoint operators, namely, the one-dimensional
Schrödinger operator with complex potential and the
operator of magnetic induction on a two-dimensional
symmetric surface. The spectrum of these operators,
in the semiclassical limit, is concentrated in the O(h2)-
neighborhood of some curves in the complex plane E;
these curves form the so-called spectral graph. It turns
out that each edge of the spectral graph corresponds
to a certain cycle on the Riemann surface defined by
the classical complex Hamiltonian system (this is a
surface of constant energy).
The asymptotics of the eigenvalues can be calcu-

lated by using complex equations which are similar to
the Bohr–Sommerfeld–Maslov quantization conditions
on the Riemann surface. However, in contrast to the
self-adjoint case, in order to evaluate the eigenvalues,
it is required to satisfy the corresponding condition
on only one cycle, and it turns out that different cy-
cles determine different parts of the spectrum (and
different edges of the spectral graph).

2. Schrödinger equation with a
complex potential

The spectral problem for the Schrödinger equation on
a circle with a purely imaginary potential

− h2ψ′′ + ıV (x)ψ = λψ, ψ(x+ 2π) = ψ(x) (4)

arises, in particular, as a model problem for the Orr–
Sommerfeld operator in the theory of hydrodynamic
stability (see, e.g., [12–20]). A close problem ap-
pears in the statistical mechanics of the Coulomb
gas (see [11]). Here h→ 0 is a small parameter and
V (x) is a trigonometric polynomial. The asymptotic
behavior of the spectrum of this operator for different
trigonometric polynomials V as h→ 0 was calculated
in [21–25]; it turns out here that the numbers λ satis-
fying (1) fill a half-strip in the complex plane entirely,
while the actual spectrum is discrete and concentrates
near some graph. The results of these papers can be
reformulated in terms of the quantization rules on Rie-
mann surfaces as follows. Consider a Riemann surface
Λ in the complex phase space Φ = (C/2πZ)× C with
coordinates (x, p), where Λ is given by the equation

p2 + ıV (x) = λ;

this surface is obtained by gluing together two cylin-
ders of the variable x along finitely many cuts, namely,
the zeros of the trigonometric polynomial V are joined
to one another and to the points at infinity. The
results of the papers mentioned above imply the fol-
lowing assertion.

Theorem 2. The spectrum of the Schrödinger oper-
ator concentrates in the O(h2)-neighborhood of the
set given by the family of equations

1
2πh

∫
γ

p dx = m+ µ

4 , (5)

where γ is some cycle on surface Λ, µ ∈ {0, 2}, and
m = O(1/h) is an integer.

Remark 5. In contrast to the self-adjoint case, the
quantization condition must hold on only one cycle
in the given family of cycles, and different cycles
determine different parts of the spectrum.
Remark 6. Separating the real and imaginary parts
in equations (5) we obtain the system

=
∫
γ

p dx = 0, (6)

< 1
2πh

∫
γ

p dx = m+ µ

4 . (7)

The first equation does not depend on h. The
combination of these equations for different cycles
defines a set of analytical curves in the complex plane
λ, the so-called spectral graph. The second equation
defines a discrete set of asymptotic eigenvalues; for a
fixed cycle γ, these eigenvalues are concentrated near
the corresponding edge of the spectral graph.
Remark 7. In [21–25], examples of spectral graphs
for specific surfaces Λ are presented. In particular, if
V (x) = cosx, then surface Λ is homeomorphic to a
torus with two punctures; the corresponding spectral
graph consists of three edges corresponding to the
three cycles in the surface and has the shape shown
in Fig. 1. If

V = cosx+ cos 2x,
then the surface is homeomorphic to a pretzel with
two punctures (a sphere with two handles and with
two disks removed); the corresponding spectral graph
is shown in Fig. 2 and consists of five edges (note
that the one-dimensional homology of Λ is the five-
dimensional in this case).

Remark 8. The equations for the asymptotic eigenval-
ues can be represented by explicit formulas∫ xk

xj

√
λ− ıV (x) dx = πh(mkj + µ/4) (8)

where mkj are integers, µ ∈ {0, 2}, and xk and xj are
zeros of the integrand. In this case, the equation

=
∫ xk

xj

√
λ− ıV (x) dx = 0 (9)
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Figure 1. Spectral graph for the case V = cosx

defines the edges of the spectral graph, and the spec-
tral points are defined by the equations:

<
∫ xi

xj

√
λ− ıV (x) dx = πh(mij + µ/4). (10)

Remark 9. Integer µ is the analog of the Maslov index;
however, the definition of this number is quite different.
Namely, µ(γ) equals the index of intersection of the
cycle γ with the pull-back of the real circle =x = 0
with respect to the projection (x, p)→ x.

3. Equation of magnetic induction
The spectral problem for the operator of induction,

h24B − {v,B} = −λB, (11)

divB = 0 (12)

arises when describing the magnetic field in a conduc-
tive liquid (in particular, the magnetic fields of planets,
stars, and galaxies, see, e.g., [9]). Here, v stands for
a given smooth divergence-free field on a Riemannian
manifold M , ∆ for the Laplace–Beltrami operator,
and B is the desired vector field (the magnetic field).
Parameter h characterizes the resistance in the liquid,
and the passage to the limit as h→ 0 corresponds to
high conductivity.
Clearly, the spectrum of the operator of induction

depends substantially on the manifold M and on the
field V and can be computed efficiently in special sit-
uations only. Below we consider a special case of this
kind, namely, a two-dimensional surface of revolution
with the flow along the parallels. This case was dis-
cussed in detail in [24] (see also [26, 27]); we present
the main results only. Recall that a two-dimensional
compact surface of revolution is diffeomorphic either
to a torus or to a sphere.

3.1. Torus
The torus is obtained by rotating a smooth closed
curve around an axis that does not intersect the curve,
and the metric is of the form

ds2 = dz2 + u2(z)dϕ2,

Figure 2. Spectral graph for the case V = cosx +
cos 2x

where z stands for the arc length parameter on the
rotating curve, u(z) for the distance of the point to the
axis of rotation (we assume that u is a trigonometric
polynomial), and ϕ for the angle of rotation. We
assume that field v is directed along the parallels,
v = a(z) ∂

∂ϕ , where a is a trigonometric polynomial,
in which case, the variables in the spectral equation
can be separated and the asymptotic behavior of the
spectrum can be calculated by using equations similar
to (5). The Riemann surface Λ is given by the equation

p2 + ina(z) = λ

(n is an integer constant entering the separation of
variables), and the spectral graph is defined from
equations (9), in which V = na.

3.2. Sphere
The sphere is obtained by rotating a smooth curve
(the graph of a function f(z)) around the z axis which
intersects the curve at two points at which the tangent
to the curve is perpendicular to the axis of rotation
(the poles of the surface). We assume that

f(z) =
√

(z − z1)(z − z2)k(z),

where z1 and z2 are the poles of the surface, k(z) is
a polynomial, and k(z) > 0 for z ∈ [z1, z2]. As far as
field v is concerned, it is assumed that

v = a(z) ∂
∂ϕ

,

where a(z) is a polynomial. The Riemann surface is
given in C2 by the equation

p2f(z)2 + ina(z) = λ;

it is punctured not only at the points at infinity but
also at the zeros of f (i.e., at the the poles of M).
The asymptotics of the spectrum is still defined by
equation (5); analytical equations (8) are replaced by
the equations∫ zk

zj

√
(f2
z + 1)(ina(z) + λ) dz = πh(mij + µ/4),

where zi and zj are the zeros and poles of the integrand
(in particular, the poles of the surface of revolution
M can be taken as the limits of integration).
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Figure 3. Cycles on the Riemann surface

As an example, consider the simplest case of the
standard sphere (f =

√
1− z2) and take a(z) = z. In

this case, the Riemann surface is homeomorphic to
the torus with three punctures, namely, at the points
z = ±1 and at the point at infinity. The cycles are
depicted in Fig. 3.
Cycle γ1 goes around the points −1 and 1, the

cycles γ2 and γ3 go around the points iλ/n, −1 and
the points iλ/n, 1, respectively. Every cycle defines
the corresponding quantization conditions, which are
of the form

1
πh

∫ 1

−1

√
inz − λ
1− z2 dz = 1

2 +m1

for cycle γ1,

1
πh

∫ iλ/n

−1

√
inz − λ
1− z2 dz = m2

for cycle γ2, and

1
πh

∫ iλ/n

1

√
inz − λ
1− z2 dz = m3

for cycle γ3.
To every quantization condition, there corresponds

its own sequence of eigenvalues.
Remark 10. In contrast to the preceding section, the
quantization conditions corresponding to a surface of
revolution involve an integer n (the constant arising
in the course of the separation of variables). The
asymptotic eigenvalues and the edges of the spectral
graph depend on n; thus, the graph now consists of
countably many edges. For the standard sphere and
for a = z, this graph is shown in Fig. 4.

4. Conclusions
We have studied the asymptotic behavior of the eigen-
values of the Schrödinger operator with complex peri-
odic potential and of the induction operator on the

Figure 4. Spectral graph with countably many edges

surface of revolution. Both appear in concrete physi-
cal problems (a study of the stability of a viscous fluid,
a description of the magnetic fields in stars and galax-
ies, statistical mechanics of Coulomb gas etc.) We
show that semiclassical asymptotics of the spectrum
can be computed with help of quantization conditions
on the corresponding Riemann surface. We discuss
the relation of these equation to the standard EBK
— Maslov quantization: equations should be consid-
ered for different cycles of the surface separately and
the Maslov index should be replaced by the index of
intersection with the pull-back of the real circle.
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