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Abstract. We present a simple Lie-algebraic approach to momentum-space two-point functions of
two-dimensional conformal field theory at finite temperature dual to the BTZ black hole. Making
use of the real-time prescription of AdS/CFT correspondence and ladder equations of the Lie algebra
so(2, 2) ∼= sl(2,R)L ⊕ sl(2,R)R, we show that the finite-temperature two-point functions in momentum
space satisfy linear recurrence relations with respect to the left and right momenta. These recurrence
relations are exactly solvable and completely determine the momentum-dependence of retarded and
advanced two-point functions of finite-temperature conformal field theory.
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1. Introduction and summary
Conformal symmetry is powerful enough to constrain
the possible forms of correlation functions in quantum
field theory. It has been long appreciated that, for scalar
(quasi-)primary operators, for example, SO(2, d) confor-
mal symmetry completely fixes the possible forms of two-
and three-point functions up to an overall normalization
factor in any spacetime dimension d ≥ 1. This symmetry
constraint works well in position space, however, its
direct implication to momentum-space correlators are
less obvious before performing the Fourier transform.
Since momentum-space correlators are directly related
to physical observables (e.g. the imaginary part of a
retarded two-point function in momentum space gives
the spectral density of many body systems), it is impor-
tant to understand how directly conformal symmetry
constrains the possible forms of momentum-space cor-
relators. From the practical computational viewpoint,
it is also important to develop efficient methods for
computing momentum-space correlators directly through
symmetry considerations, because Fourier transforms of
position-space correlators are hard in general.

In this short paper we continue our investigation [1]
and present a novel Lie-algebraic approach to momentum-
space two-point functions of conformal field theory at
finite temperature by using the AdS/CFT correspon-
dence. The AdS/CFT correspondence relates strongly-
coupled conformal field theory to classical gravity in
a one-higher spatial dimension. According to the cor-
respondence, finite-temperature conformal field the-
ory is dual to an asymptotically AdS spacetime that
contains black holes. In this paper we focus on two-
dimensional conformal field theory (CFT2) at finite
temperature dual to the three-dimensional anti-de Sit-
ter (AdS3) black hole (i.e. Bañados-Teitelboim-Zanelli

(BTZ) black hole [2, 3]) and we give a simple derivation
of retarded and advanced two-point functions of scalar
operators of dual CFT2 by just using the real-time
prescription of AdS/CFT correspondence à la Iqbal and
Liu [4, 5] and the ladder equations of the Lie-algebra
so(2, 2) ∼= sl(2,R)L ⊕ sl(2,R)R of the isometry group
SO(2, 2) ∼= (SL(2,R)L × SL(2,R)R)/Z2 of AdS3. In
contrast to the conventional approaches to momentum-
space CFT correlators (such as Fourier-transform of
position-space correlators or original real-time AdS/CFT
prescription [4–6], which requires bulk field equations
to be solved explicitly), our Lie-algebraic method is
quite simple and clarifies the role of conformal symmetry
in momentum-space correlators in a direct way: For
finite-temperature two-point functions in momentum
space, conformal symmetry manifests itself in the form
of recurrence relations which are exactly solvable and, up
to an overall normalization factor, completely determine
the momentum dependence of two-point functions.

The rest of the paper is organized as follows. In
section 2 we briefly review the AdS3 black hole based on
the quotient construction [3, 7]: The AdS3 black hole
is a locally AdS3 spacetime and is given by a quotient
space of AdS3 with an identification of points under
the action of a discrete subgroup Z of the isometry
group SO(2, 2) of AdS3. Though not so widely ap-
preciated, the AdS3 black hole is a quotient space of
AdS3 with a particular coordinate patch in which both
the time- and angle-translation generators generate
the one-parameter subgroup SO(1, 1) ⊂ SO(2, 2).1 In

1This is true for a non-extremal black hole with positive
mass. Time- and angle-translation generators generate other
one-parameter subgroups for the zero-mass limit of a black
hole (or a black hole vacuum), the extremal black hole and
the negative mass black hole (or black hole with naked sin-
gularity). For example, in the case of a black hole vacuum,
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section 3 we introduce a coordinate realization of the
Lie algebra so(2, 2) ∼= sl(2,R)L ⊕ sl(2,R)R realized in
scalar field theory on the AdS3 black hole background.
We then demonstrate in section 4 a simple Lie-algebraic
method for computing the retarded and advanced CFT2
two-point functions by just using the ladder equations
of the Lie algebra so(2, 2) ∼= sl(2,R)L⊕ sl(2,R)R in the
basis in which SO(1, 1)× SO(1, 1) ⊂ SO(2, 2) gener-
ators become diagonal. We will see that our method
correctly reproduces the known results [5, 8, 9].

2. AdS3 black hole: Locally AdS3
spacetime in the SO(1, 1)
×SO(1, 1) diagonal basis

Let us start with the following non-rotating BTZ black
hole described by the metric

ds2
AdS3 BH = −

( ρ2

R2 − 1
)
dτ2

+ dρ2

ρ2/R2 − 1 + ρ2dθ2, (1)

where τ ∈ (−∞,+∞), ρ ∈ (0,∞), θ ∈ [0, 2π), and
R > 0 is the AdS3 radius. In this paper we simply call
(1) the AdS3 black hole and focus on the region outside
the horizon ρ > R. For the following discussions it is
convenient to introduce a new spatial coordinate x as
follows:

ρ = R coth(x/R), (2)

where x ranges from 0 to ∞. Note that the black
hole horizon ρ = R corresponds to x = ∞, while
the AdS3 boundary ρ = ∞ corresponds to x = 0. A
straightforward calculation shows that in the coordinate
system (τ, x, θ) the black hole metric (1) takes the
following form:

ds2
AdS3 BH = −dτ

2 + dx2 +R2 cosh2(x/R)dθ2

sinh2(x/R)
. (3)

For the sake of notational brevity, we will hereafter work
in the units in which R = 1.
Several comments are in order:

(1.) BTZ black hole. The above AdS3 black hole (1)
is locally isometric to the rotating BTZ black hole
[2, 3] and obtained by suitable change of spacetime
coordinates. Indeed, it is easy to show that the BTZ
black hole metric

ds2
BTZ = −

(r2 − r2
+)(r2 − r2

−)
r2 dt2

+ r2dr2

(r2 − r2
+)(r2 − r2

−) + r2
(
dφ− r+r−

r2 dt
)2
, (4)

the time- and angle-translation generators generate the sub-
group E(1)× E(1) ⊂ SO(2, 2) ∼= (SL(2,R)L × SL(2,R)R)/Z2
prior to making the Z-identification. (Note that SL(2,R)
contains three distinct one-parameter subgroups: the rota-
tion group SO(2), the Lorentz group SO(1, 1) and the Eu-
clidean group E(1).) For detailed discussions of the quo-
tient construction, we refer to the original paper [3] (see
also [7]).

where r+ and r− are the outer and inner horizons,
respectively, is reduced to the AdS3 black hole (1) by
the following coordinate change [10]:

ρ =

√
r2 − r2

−
r2
+ − r2

−
, τ = r+t− r−φ,

θ = r+φ− r−t. (5)

Note that the light-cone coordinates satisfy the rela-
tions τ ± θ = (r+ ∓ r−)(t± φ).

(2.) Local coordinate patch of AdS3. The AdS3
black hole is a locally AdS3 spacetime and is obtained
from the AdS3 spacetime with a suitable periodic
identification [3, 7]. To see this, let us first note
that the AdS3 spacetime can be embedded into the
four-dimensional ambient space R2,2 and defined as
the following hypersurface with constant negative
curvature −1 (= −1/R2):

AdS3 =
{

(X−1, X0, X1, X2) ∈ R2,2 ∣∣
− (X−1)2 − (X0)2 + (X1)2 + (X2)2 = −1

}
. (6)

The AdS3 black hole (3) is given by the following
local coordinate patch of the hypersurface:

(X−1, X0, X1, X2) =
(

coth x cosh θ,

sinh τ
sinh x, coth x sinh θ, cosh τ

sinh x

)
, (7)

with the periodic identification θ ∼ θ + 2nπ (n ∈ Z).
In fact, it is straightforward to show that the
induced metric ds2

AdS3
= −(dX−1)2 − (dX0)2 +

(dX1)2 + (dX2)2
∣∣
(X−1,X0,X1,X2)∈AdS3

on the hyper-
surface takes the following form:

ds2
AdS3

= −dτ
2 + dx2 + cosh2 xdθ2

sinh2 x
. (8)

It should be emphasized that the periodic identi-
fication θ ∼ θ + 2nπ makes the metric (8) black
hole. As mentioned in [3], without such identification
the metric (8) just describes a portion of AdS3 and
the horizon is just that of an accelerated observer.
(Roughly speaking, (7) is the AdS3 counterpart of the
Rindler coordinate patch of Minkowski spacetime.)

(3.) SO(1, 1) × SO(1, 1) global symmetry. As is
well-known, the AdS3 spacetime (6) has an alternative
equivalent description as the SL(2,R) group manifold
defined as follows:

AdS3 =
{
X =

(
X−1+X2 X1−X0

X1+X0 X−1−X2

) ∣∣∣ detX = 1
}
.

(9)

With this definition it is obvious that the AdS3
spacetime (9) is invariant under left- and right-
multiplications of SL(2,R) matrices, X 7→ X ′ =
gLXgR, where gL ∈ SL(2,R)L and gR ∈ SL(2,R)R
with the Z2-identification (gL, gR) ∼ (−gL,−gR).
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(Note that (gL, gR) and (−gL,−gR) give the same
X ′.) In the local coordinate patch (7) the 2×2 matrix
X =

(
X−1+X2 X1−X0

X1+X0 X−1−X2

)
takes the following form:

X =
(

coth x cosh θ+ cosh τ
sinh x coth x sinh θ− sinh τ

sinh x

coth x sinh θ+ sinh τ
sinh x coth x cosh θ− cosh τ

sinh x

)
.

(10)

Now it is easy to see that the time-translation τ 7→
τ ′ = τ + ε is induced by the noncompact SO(1, 1) ⊂
SO(2, 2) group action X 7→ X ′ = gLXgR given by
the matrices

gL = g−1
R =

(
cosh ε

2 sinh ε
2

sinh ε
2 cosh ε

2

)
∈ SO(1, 1). (11)

Likewise, the spatial-translation θ 7→ θ′ = θ + ε is
induced by another SO(1, 1) ⊂ SO(2, 2) group action
X 7→ X ′ = gLXgR given by the matrices

gL = gR =
(

cosh ε
2 sinh ε

2
sinh ε

2 cosh ε
2

)
∈ SO(1, 1). (12)

Hence, prior to making the periodic identification
θ ∼ θ + 2nπ, the time- and spatial-translation gen-
erators i∂τ and −i∂θ must be given by two distinct
SO(1, 1) generators of the Lie group SO(2, 2) ∼=
(SL(2,R)L × SL(2,R)R)/Z2. After the periodic
identification θ ∼ θ + 2nπ, on the other hand,
gL and gR in Eq. (12) should be regarded as an
element of the coset SO(1, 1)/Z,2 where the Z-
identification is defined by ε ∼ ε + 2nπ (n ∈ Z).
Hence, the AdS3 black hole is given by the quotient
space AdS3/Z, where the identification subgroup
Z = {gn | n = 0,±1,±2, · · · } ⊂ SO(2, 2) is gener-
ated by the matrix g = gL = gR =

(
coshπ sinhπ
sinhπ coshπ

)
.

It should be emphasized here that the fact that
the time-translation generator generates the non-
compact Lorentz group SO(1, 1) is a manifestation
of thermodynamic aspects of a black hole: If we
work in Euclidean signature, the noncompact Lorentz
group SO(1, 1) becomes the compact rotation group
SO(2) ∼= S1 such that the frequencies conjugate to
the imaginary time are quantized and hence give rise
to the Matsubara frequencies.

(4.) Two-point function. As we have seen, the AdS3
black hole (1) is a locally AdS3 spacetime but its
global structure is quite different from AdS3. This
global difference of course leads to a big difference
between the structure of two-point functions of CFT2
living on the boundary of the AdS3 black hole and
those living on the boundary of AdS3 [10]. To see this,
let GAdS3 BH(τ, θ) be a scalar two-point function of
CFT2 dual to the AdS3 black hole and let GAdS3(τ, θ)
2Note that the parameter space of SO(1, 1) (more precisely,

SO+(1, 1), i.e. the connected component to the identity element)
is the whole line R. Hence the parameter space of SO(1, 1)/Z is
R/Z, which is isomorphic to a circle S1.

be a scalar two-point function of CFT2 living on the
AdS3 boundary without periodic identification. Then,
once we get GAdS3(τ, θ), the scalar two-point function
of CFT2 dual to the AdS3 black hole is given by the
coset construction (or the method of images [10]):

GAdS3 BH(τ, θ) =
∑
n∈Z

ρ(n)GAdS3(τ, θ + 2nπ), (13)

where ρ : Z→ U(1) is a scalar (i.e. one-dimensional)
unitary representation of the identification subgroup Z
and given by ρ(n) = einα. Here α is a real parameter
and its value depends on the model. For example,
for scalar operator O(τ, θ) that satisfies the periodic
boundary condition O(τ, θ + 2π) = O(τ, θ), α is zero
(i.e. ρ is the trivial representation). (Basically, α
is a boundary condition parameter for O(τ, θ) with
respect to angle θ.) We emphasize that, regardless of
the value of α, thus constructed two-point function
(13) indeed satisfies the periodic boundary condition
GAdS3 BH(τ, θ + 2π) = GAdS3 BH(τ, θ).

For simplicity throughout this paper we will focus
on GAdS3 (i.e. the zero-winding sector of GAdS3 BH),
because GAdS3 BH can be constructed from the knowl-
edge of GAdS3 . Hence in what follows we do not need
to worry about the subtleties of periodic identification
and global difference between the AdS3 black hole
and the AdS3 spacetime.3

Let us next consider a massive scalar field φ of mass
m on the background spacetime (8) (without periodic
identification) that satisfies the Klein-Gordon equation
(�AdS3−m2)φ = 0, where the d’Alembertian is given by
�AdS3 = sinh2 x

[
−∂2

τ + ∂2
x − 1

sinh x cosh x∂x −
−∂2

θ

cosh2 x

]
.

In order to get CFT two-point functions via real-time
AdS/CFT prescription, we need to find a solution to the
Klein-Gordon equation whose τ - and θ-dependences are
given by the plane waves, φ(τ, x, θ) = φω,k(x)e−iωτ+ikθ;
that is, we need to know a simultaneous eigenfunction of
the d’Alembertian �AdS3 , the time-translation generator
i∂τ and the spatial-translation generator −i∂θ. For
such a simultaneous eigenfunction the Klein-Gordon
equation reduces to the following differential equation:4

(
−∂2

x + 1
sinh x cosh x∂x

+ ∆(∆− 2)
sinh2 x

+ k2

cosh2 x

)
φω,k = ω2φω,k, (14)

where ∆ = 1 +
√
m2 + 1 is one of the solutions to the

quadratic equation ∆(∆− 2) = m2. Note that near the

3Actually, the momentum-space two-point functions com-
puted in Refs. [5, 8, 9] are nothing but the momentum-space
representation of GAdS3 rather than GAdS3 BH (or GBTZ).

4Redefining the field as φ 7→ φ̃ = (cothx)−1/2φ, one sees that
the differential equation (14) reduces to the Schrödinger equation
with hyperbolic Pöschl-Teller potential(

−∂2
x +

(∆− 1)2 − 1/4
sinh2 x

+
k2 + 1/4
cosh2 x

)
φ̃ω,k = ω2φ̃ω,k.
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AdS3 boundary x = 0 the differential operator in the left-
hand side of (13) behaves as −∂2

x+ 1
x∂x+ ∆(∆−2)

x2 +O(1).
Hence the general solution has the following asymptotic
near-boundary behavior:

φ(τ, x, θ) ∼ A∆(ω, k)x∆e−iωτ+ikθ

+B∆(ω, k)x2−∆e−iωτ+ikθ as x→ 0, (15)

where A∆(ω, k) and B∆(ω, k) are integration constants
which may depend on ∆, ω and k. The real-time
prescription of AdS/CFT correspondence tells us that
the retarded and advanced two-point functions are given
by the ratio [4, 5]

G
R/A
∆ (ω, k) = (2∆− 2)A∆(ω, k)

B∆(ω, k) , (16)

where the retarded two-point function GR∆ is obtained
by the solution that satisfies the in-falling boundary
conditions at the horizon, whereas the advanced two-
point function GA∆ is obtained by the solution that
satisfies the out-going boundary conditions at the horizon
[6].

The goal of this paper is to compute the ratio (15) in
a Lie-algebraic fashion without solving the Klein-Gordon
equation explicitly.

3. Lie algebra sl(2,R)L ⊕ sl(2,R)R

in the SO(1, 1)× SO(1, 1)
diagonal basis

In order to get the momentum-space two-point func-
tions, we need to find a simultaneous eigenfunction
of the d’Alembertian �AdS3 , the time-translation gen-
erator i∂τ and the spatial-translation generator −i∂θ.
As we will see below, the d’Alembertian is given by
the quadratic Casimir of the Lie algebra so(2, 2) ∼=
sl(2,R)L ⊕ sl(2,R)R. On the other hand, as we have
seen in the previous section, the time- and spatial-
translations are induced by two distinct noncompact
SO(1, 1) group actions such that i∂τ and −i∂θ must
be given by SO(1, 1) generators of the Lie algebra
so(2, 2) ∼= sl(2,R)L ⊕ sl(2,R)R. Hence we need to
work in the basis in which the noncompact SO(1, 1)
generators become diagonal. We note that unitary repre-
sentations of the Lie algebra sl(2,R) in the noncompact
SO(1, 1) basis have been studied in the mathematical
literature [11, 12], and are known to be a bit com-
plicated. In this paper we will not touch upon these
mathematical subtleties and will not discuss which of
the unitary representations are realized in the scalar
field theory on the background (8) (without periodic
identification).5 Instead, we will present a rather heuris-
tic argument that reproduces the known results by just

5One way to avoid these subtleties is to Wick-rotate both
the time τ and angle θ. In such Euclidean-like signature, the
noncompact SO(1, 1)× SO(1, 1) symmetry becomes the compact
SO(2)× SO(2) symmetry such that we can use standard unitary
representations of the Lie-algebra so(2, 2) ∼= sl(2,R)L⊕sl(2,R)R in
the SO(2)×SO(2) diagonal basis. In this approach, computations
of momentum-space two-point functions are essentially reduced to
those presented in Ref. [1].

using the ladder equations of the Lie algebra so(2, 2) in
the SO(1, 1)× SO(1, 1) diagonal basis.
To begin with, let us first recall the Lie algebra

so(2, 2) ∼= sl(2,R)L ⊕ sl(2,R)R, which is spanned by
six self-adjoint generators {A0, A1, A2, B0, B1, B2} that
satisfy the following commutation relations:

[A0, A1] = iA2, [A1, A2] = −iA0, [A2, A0] = iA1,
(17a)

[B0, B1] = iB2, [B1, B2] = −iB0, [B2, B0] = iB1,
(17b)

with other commutators vanishing, [Aa, Bb] = 0
(a, b = 0, 1, 2). We note that A0 and B0 are com-
pact SO(2) generators, whereas A1, A2, B1, B2 are
noncompact SO(1, 1) generators. Note also that the
standard classification of unitary representations of the
Lie algebra so(2, 2) is based on the Cartan-Weyl ba-
sis {A0, A1 ± iA2, B0, B1 ± iB2}, where A1 ± iA2 and
B1± iB2 play the role of ladder operators that raise and
lower the eigenvalues of A0 and B0 by ±1. For the fol-
lowing discussions, however, it is convenient to introduce
the hermitian linear combinations A± = A2 ∓A0 and
B± = B2 ∓B0, which also play the role of “ladder” op-
erators; see next section. In the basis {A1, A±, B1, B±}
the commutation relations (17a) and (17b) are cast into
the following forms:

[A1, A±] = ±iA±, [A+, A−] = 2iA1, (18a)
[B1, B±] = ±iB±, [B+, B−] = 2iB1. (18b)

In the problem of scalar field theory on the background
(8) (without periodic identification), these symmetry
generators turn out to be given by the following first-
order differential operators:

A1 = i

2(∂τ + ∂θ), (19a)

A± = − i2e±(τ+θ)
[
sinh x ∂x

±
(

cosh x ∂τ + 1
cosh x∂θ

)]
, (19b)

B1 = i

2(∂τ − ∂θ), (19c)

B± = + i

2e±(τ−θ)
[
sinh x ∂x

±
(

cosh x ∂τ −
1

cosh x∂θ
)]
, (19d)

which indeed satisfy the commutation relations (18a)
and (18b). The quadratic Casimir of the Lie algebra
so(2, 2) ∼= sl(2,R)L⊕sl(2,R)R yields the d’Alembertian
on the AdS3 black hole

C2(so(2, 2)) = 2C2(sl(2,R)L) + 2C2(sl(2,R)R)

= sinh2 x
(
−∂2

τ + ∂2
x −

1
sinh x cosh x∂x −

−∂2
θ

cosh2 x

)
,

(20)

where the quadratic Casimir of each sl(2,R) is given by
C2(sl(2,R)L) = (A0)2−(A1)2−(A2)2 = −A1(A1±i)−
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A∓A± and C2(sl(2,R)R) = (B0)2 − (B1)2 − (B2)2 =
−B1(B1 ± i)−B∓B±. A straightforward calculation
shows that C2(sl(2,R)L) and C2(sl(2,R)R) coincide
and are given by

C2(sl(2,R)L) = C2(sl(2,R)R) = 1
4C2(so(2, 2)).

(21)

Asymptotic near-boundary algebra. We are in-
terested in the asymptotic near-boundary behavior of
the solution to the Klein-Gordon equation (14). To
analyze this, let us introduce the boundary symmetry
generators defined as the limit x→ 0 of (19a)–(19d):

A0
1 := lim

x→0
A1 = i

2(∂τ + ∂θ), (22a)

A0
± := lim

x→0
A± = − i2e±(τ+θ)[x∂x ± (∂τ + ∂θ)

]
,

(22b)

B0
1 := lim

x→0
B1 = i

2(∂τ − ∂θ), (22c)

B0
± := lim

x→0
B± = + i

2e±(τ−θ)[x∂x ± (∂τ − ∂θ)
]
,

(22d)

which still satisfy the commutation relations of the Lie
algebra so(2, 2) ∼= sl(2,R)L ⊕ sl(2,R)R

[A0
1, A

0
±] = ±iA0

±, [A0
+, A

0
−] = 2iA0

1, (23a)
[B0

1 , B
0
±] = ±iB0

±, [B0
+, B

0
−] = 2iB0

1 . (23b)

The quadratic Casimir of this asymptotic near-boundary
algebra, which we denote by so(2, 2)0 ∼= sl(2,R)0

L ⊕
sl(2,R)0

R, takes the following simple form:

C2(so(2, 2)0) = 4C2(sl(2,R)0
L)

= 4C2(sl(2,R)0
R) = x2∂2

x − x∂x =: C0
2 . (24)

As we have repeatedly emphasized, we are interested in si-
multaneous eigenstates of the d’Alembertian �AdS3

x→0→
C0

2 , the time-translation generator i∂τ = B0
1 +A0

1 and
the spatial-translation generator −i∂θ = B0

1 −A0
1. Let

|∆, kL, kR〉0 be a simultaneous eigenstate of C0
2 , A0

1 and
B0

1 that satisfies the following eigenvalue equations:

C0
2 |∆, kL, kR〉0 = ∆(∆− 2)|∆, kL, kR〉0, (25a)

A0
1|∆, kL, kR〉0 = kL|∆, kL, kR〉0, (25b)

B0
1 |∆, kL, kR〉0 = kR|∆, kL, kR〉0. (25c)

In the coordinate realization these eigenvalue equations
become the following differential equations:(

−∂2
x + 1

x
∂x + ∆(∆− 2)

x2

)
φ0

∆,kL,kR = 0, (26a)

(i∂xL − kL)φ0
∆,kL,kR = 0, (26b)

(i∂xR − kR)φ0
∆,kL,kR = 0, (26c)

where xL and xR are light-cone coordinates given by
xL = τ + θ and xR = τ − θ, and (kL, kR) and (ω, k) are

related by kL = (ω − k)/2 and kR = (ω + k)/2. These
differential equations are easily solved with the result

φ0
∆,kL,kR(τ, x, θ) = A∆(kL, kR)x∆e−ikLxLe−ikRxR

+B∆(kL, kR)x2−∆e−ikLxLe−ikRxR , (27)

which precisely coincides with the asymptotic near-
boundary behavior of the solution (15).

4. Recurrence relations for
finite-temperature CFT2
two-point functions

As mentioned in the previous section, A± and B± (and
also A0

± and B0
±) play the role of “ladder” operators.

To see this, let us consider states A0
±|∆, kL, kR〉0 and

B0
±|∆, kL, kR〉0. The commutation relations [A0

1, A
0
±] =

±iA0
± and [B0

1 , B
0
±] = ±iB0

± give A0
1A

0
±|∆, kL, kR〉0 =

(kL±i)A0
±|∆, kL, kR〉0 and B0

1B
0
±|∆, kL, kR〉0 = (kR±

i)B0
±|∆, kR, kL〉0, which imply that A0

± and B0
± raise

and lower the eigenvalues kL and kR by ±i:6

A0
±|∆, kL, kR〉0 ∝ |∆, kL ± i, kR〉0, (28a)

B0
±|∆, kL, kR〉0 ∝ |∆, kL, kR ± i〉0. (28b)

In the coordinate realization (22a) and (22c) with the
solution (27), the left-hand sides become

A0
±φ

0
∆,kL,kR = i

(
−∆

2 ± ikL
)
A∆(kL, kR)

× x∆e−i(kL±i)xLe−ikRxR

+ i
(∆

2 − 1± ikL
)
B∆(kL, kR)

× x2−∆e−i(kL±i)xLe−ikRxR , (29a)

B0
±φ

0
∆,kL,kR = −i

(
−∆

2 ± ikR
)
A∆(kL, kR)

× x∆e−ikLxLe−i(kR±i)xR

− i
(∆

2 − 1± ikR
)
B∆(kL, kR)

× x2−∆e−ikLxLe−i(kR±i)xR , (29b)

which should be proportional to φ0
∆,kL±i,kR and

φ0
∆,kL,kR±i, respectively. In other words, the inte-

gration constants should satisfy the recurrence rela-
tions (−∆

2 ± ikL)A∆(kL, kR) ∝ A∆(kL ± i, kR) and
(∆

2 − 1± ikL)B∆(kL, kR) ∝ B∆(kL ± i, kR), and simi-
lar expressions for kR. Hence the two-point function
G∆(kL, kR), which is given by the ratio G∆(kL, kR) =

6One may wonder why the eigenvalues of the self-adjoint
operators A0

1 and B0
1 take the complex values kL ± i and kR ± i.

The reason is that, even if the state |∆, kL, kR〉0 lies inside the
domain in which the operators A0

1 and B0
1 become self-adjoint,

the states A0
±|∆, kL, kR〉0 and B0

±|∆, kL, kR〉0 turn out to lie
outside the self-adjoint domain of A0

1 and B0
1 . (For rigorous

mathematical discussions we refer to the literature [11, 12].) As we
will see below, however, a naive use of the “ladder” equations (28a)
and (28b) correctly yields the retarded and advanced two-point
functions.

146



vol. 54 no. 2/2014 A Simple Derivation of Finite-Temperature CFT Correlators

(2∆ − 2)A∆(kL, kR)/B∆(kL, kR), should satisfy the
following recurrence relations:

G∆(kL, kR) =
∆
2 − 1± ikL
−∆

2 ± ikL
G∆(kL ± i, kR), (30a)

G∆(kL, kR) =
∆
2 − 1± ikR
−∆

2 ± ikR
G∆(kL, kR ± i). (30b)

These recurrence relations are linear such that they
are easily solved by iteration. But how should we iden-
tify the solutions to these recurrence relations with
the retarded and advanced two-point functions? A
standard prescription to get the retarded (advanced)
two-point functions via AdS/CFT is to use the so-
lution to the Klein-Gordon equation that satisfies
the in-falling (out-going) boundary conditions at the
horizon x = ∞ [6]. Here we present an alterna-
tive approach to get the retarded and advanced two-
point functions without knowing the boundary condi-
tions at the horizon x = ∞. A key is the generic
causal properties of two-point functions: The re-
tarded two-point function has support only on the
future light-cone, whereas the advanced two-point func-
tion has support only on the past light-cone. Let
us first focus on the case where the point (τ, θ) on
the AdS3 boundary (∂AdS3) lies inside the future
light-cone xL = τ + θ > 0 and xR = τ − θ >
0. In this case the state (A0

−)n(B0
−)mφ0

∆,kL,kR ∝
e−i(kL−in)xLe−i(kR−im)xR converges as n,m → ∞
such that (A0

−)n(B0
−)mφ0

∆,kL,kR would be well-defined.
Hence it would be natural to expect that the
ladder equations A0

−φ
0
∆,kL,kR ∝ φ0

∆,kL−i,kR and
B0
−φ

0
∆,kL,kR ∝ φ

0
∆,kL,kR−i would lead to the retarded

two-point function. Indeed, iterative use of the re-
lations G∆(kL, kR) =

∆
2 −1−ikL
−∆

2 −ikL
G∆(kL − i, kR) and

G∆(kL, kR) =
∆
2 −1−ikR
−∆

2 −ikR
G∆(kL, kR − i) gives

GR∆(kL, kR) =
Γ(∆

2 − ikL)
Γ(1− ∆

2 − ikL)

×
Γ(∆

2 − ikR)
Γ(1− ∆

2 − ikR)
gR(∆), (31)

where gR(∆) is a normalization factor given by gR(∆) =
limn,m→∞GR∆(kL − in, kR − im). This is the retarded
two-point function with the desired analytic structure:
GR∆(kL, kR) is analytic in the upper-half complex kL-
and kR-planes and has simple poles at kL = −i2πT (∆

2 +
n) and kR = −i2πT (∆

2 +m) (n,m ∈ Z≥0) on the lower-
half complex kL- and kR-planes, where T = 1

2π (= 1
2πR )

is the Hawking temperature with respect to time τ . Let
us next derive the retarded two-point function of CFT2
dual to the rotating BTZ black hole (4). To this end, let
pL and pR be momenta conjugate to the BTZ light-cone
coordinates t± φ. Since τ ± θ and t± φ are related as
τ ± θ = (r+ ∓ r−)(t± φ), we have kL = 1

r+−r−
pL and

kR = 1
r++r−

pR, from which we get

GR∆(pL, pR) =
Γ(hL − ipL

2πTL )
Γ(h̄L − ipL

2πTL )
Γ(hR − ipR

2πTR )
Γ(h̄R − ipR

2πTR )
gR(∆),

(32)

where TL and TR are the Hawking temperature for left-
and right-moving sectors with respect to the BTZ time
t and given by

TL = r+ − r−
2π and TR = r+ + r−

2π . (33)

hL and hR are conformal weights for a scalar operator
of dual CFT2 given by

hL = hR = ∆
2 with h̄L = h̄R = 1− ∆

2 . (34)

Note that Eq. (32) precisely coincides with the known
results [8] (see also [5, 9] for the case of fermionic
operators.)
Let us next move on to the case where the

point (τ, θ) ∈ ∂AdS3 lies inside the past light-
cone xL = τ + θ < 0 and xR = τ − θ <
0. In this case the state (A0

+)n(B0
+)mφ0

∆,kL,kR ∝
e−i(kL+in)xLe−i(kR+im)xR converges as n,m→∞ such
that (A0

+)n(B0
+)mφ0

∆,kL,kR would be well-defined. Iter-
ative use of the relations

G∆(kL, kR) =
∆
2 − 1 + ikL

−∆
2 + ikL

G∆(kL + i, kR), (35a)

G∆(kL, kR) =
∆
2 − 1 + ikR

−∆
2 + ikR

G∆(kL, kR + i), (35b)

then gives the advanced two-point function

GA∆(pL, pR) =
Γ(hL + ipL

2πTL )
Γ(h̄L + ipL

2πTL )
Γ(hR + ipR

2πTR )
Γ(h̄R + ipR

2πTR )
gA(∆),

(36)

where gA(∆) = limn,m→∞GA∆(pL + in, pR + im). We
note that, since in general the retarded and advanced
two-point functions are related by complex conjugate
GA∆(pL, pR) = [GR∆(pL, pR)]∗, the normalization con-
stants must be related by gA(∆) = [gR(∆)]∗.
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