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Abstract. The object under scrutiny is the dynamical symmetry connected with conservation of the
Laplace-Runge-Lenz vector (LRL) in the hydrogen atom problem solved by means of noncommutative
quantum mechanics (NCQM). The considered noncommutative configuration space has such a “fuzzy”
structure that the rotational invariance is not spoilt. An analogy with the LRL vector in the NCQM is
brought to provide our results and also a comparison with the standard QM predictions.
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1. Introduction
Our main goal we are after is to investigate the exis-
tence of dynamical symmetry of the Coulomb-Kepler
problem in the quantum mechanics in noncommu-
tative space, and possibly to find the generalization
of the so-called Laplace-Runge-Lenz (LRL) vector
for this case. Before actually starting, we briefly
look at the history of the LRL vector. We call this
Laplace-Runge-Lenz vector, as it is commonly named
nowadays, but as far as we know, the first ones to
make a mention of it were Jakob Hermann and Johann
Bernoulli in the letters they exchanged in 1710, see [1],
[2]. So the name “Hermann-Bernoulli vector” would
be more proper. Much later, in 1799 the vector was
rediscovered by Laplace in his Celestial Mechanics [3].
Then it appeared in a popular German textbook on
vectors by C. Runge [4], which was referenced by W.
Lenz in his paper on the (old) quantum mechanical
treatment of the Kepler problem or hydrogen atom
[5].

Now back to physics. The Coulomb-Kepler problem
is all about the motion of a particle in a field of a
central force proportional to (r−2). The corresponding
Newton equation for a body of mass m reads

m~̇v = −q ~r
r3 . (1)

Here q denotes a constant which specifies the magni-
tude of the force applied. The system with a central
force definitely is rotationally symmetric and the or-
bital momentum,

~L = m~r × ~v, (2)

is conserved in any central field. However, as to the
symmetries, more has to be said in this case, due
to the fact that not only is the force central, but in
addition it has the inverse square dependence of the
distance. Besides the components of ~L, the Coulomb-
Kepler problem has three additional integrals of mo-
tion, namely those represented by the conserved LRL
vector,

~A = ~L× ~v + q
~r

r
. (3)

When the motion of a planet around the Sun is con-
sidered, the conservation of the given quantity has to
do with the constant eccentricity of the orbit and the
position of the perihelion.
Another well-known system characterized by Cou-

lomb potential is the hydrogen atom. Obviously a need
for the use of quantum mechanics arises here. There
are, however, several ways to address the issue. In
1926 Wolfgang Pauli published his paper on the sub-
ject [6]. He used the LRL vector to find the spectrum
of a hydrogen atom using modern quantum mechan-
ics and the hidden dynamical symmetry of the prob-
lem, without knowledge of the explicit solution of the
Schrödinger equation. It turned out that the LRL
vector can be found among the hermitian operators
acting in the Hilbert space considered in an almost
complete analogy with the classical case, the only sub-
tlety to deal with being the fact that the cross product
needs to be properly symmetrized, resulting in

AQMk = 1
2εijk(Livj + vjLi) + q

xk
r
, (4)

where vj = − i~m∂j stands for velocity operator. Im-
portantly the operators Li and Ai commute with the
Hamiltonian, i.e. are conserved with respect to time
evolution, and as to their mutual commutation re-
lations, there would be pretty good views of them
forming a closed algebra so(4), if it were not for the
commutator [Ai, Aj ] ∝ LkH. However, restricting
ourselves to the subspace HE spanned by eigenvectors
of H corresponding to the eigenvalue E, H can be re-
placed by its eigenvalue, which is a c-number. Besides
enabling the algebra to close, we have also dragged
the energy into the very definition of the algebra gen-
erators. This, together with the theory related to the
relevant Casimir operators, has a direct impact on
the H-atom energy spectrum. In this way Pauli found
the correct formulas for the hydrogen atom spectrum
even before Schrödinger.

Now the search for the analogy in noncommutative
quantum mechanics (NCQM) begins. The rest of this
paper is organized in the following way: In Section 2
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we give a brief introduction to the quantum mechan-
ics in a spherically symmetric noncommutative space.
The Hilbert space of wave functions in NC space and
the NC generalizations of important operators (Hamil-
tonian, angular momentum, coordinate and velocity)
are introduced. When we use these, a generalization
of the dynamical symmetry of the Coulomb-Kepler
problem in NCQM is presented in Section 3. Section
4 provides conclusions. We skip all the detailed and
lengthy calculations that can be found in our recently
published paper [7].

2. Basics of noncommutative
quantum mechanics

To begin, it should be made clear how to introduce
some uncertainty principle into the configuration space
for the Coulomb problem without spoiling the key
feature which allows us to find the exact solution -
the rotational invariance.
The uncertainty is expressed as nontrivial commu-

tation relations for the NC analogs of the former
Cartesian coordinates (obviously we have to abandon
c-numbers), defined in a spherically symmetrical way.

The coordinates in the NC configuration space
R3
λ are realized in terms of 2 pairs of boson annihila-

tion and creation operators aα, a+
α , α = 1, 2, satisfying

[aα, a+
β ] = δαβ , [aα, aβ ] = [a+

α , a
+
β ] = 0. (5)

They act in an auxiliary Fock space F spanned by
the normalized vectors

|n1, n2〉 = (a+
1 )n1(a+

2 )n2

√
n1!n2!

|0〉. (6)

The normalized vacuum state is denoted as |0〉 ≡
|0, 0〉.
The noncommutative coordinates xj , j =

1, 2, 3, and the NC analog of the Euclidean distance
from the origin are given as

xj = λa+σja ≡ λσjαβa
+
αaβ ,

r = λ(N + 1), (7)

where σj are the Pauli matrices, N = a+
αaα is the

number operator in the Fock space, and λ is a length
parameter. Its magnitude is not fixed within our
model. Naturally it has a connection with the small-
est distance relevant in the given noncommutative
configuration space denoted as R3

λ. The key rotation-
ally invariant relations in the theory are

[xi, xj ] = 2iλεijkxk, [xi, r] = 0, r2−x2
j = λ2. (8)

The first equation defines a noncommutative or fuzzy
sphere that appeared a long time ago in various con-
texts [8], e.g., quantization on a sphere = nonflat
phase space, a simple model of NC manifolds. All
these models considered a single fuzzy sphere. Here we
deal with an infinite sequence of fuzzy spheres dynam-
ically via an NC analog of the (radial) Schrödinger

equation that is introduced below. We remark that
while the first equation in (8) is postulated, the other
two follow from the construction of R3

λ.
While constructing NC quantum mechanics, firstly

we have to decide on a Hilbert space Hλ of states
(see also [9]). The suitable choice is a linear space
of normally-ordered analytic functions containing the
same number of creation and annihilation operators:

Ψ =
∑

Cm1m2n1n2(a+
1 )m1(a+

2 )m2an1
1 an2

2 , (9)

which possess finite weighted Hilbert-Schmidt norm

‖Ψ‖2 = 4πλ2Tr[rΨ†Ψ]. (10)

(The summation in (9) is over nonnegative integers
satisfying m1 +m2 = n1 + n2.)

Our NC wave functions Ψ are themselves operators
on the Fock space mentioned above, so the relations
which occur are to be looked at as operator equalities
(we could put |n1, n2〉 on both sides of every such
equation).
We can move to the definition of the operators

acting on NC wave functions Ψ ∈ Hλ. To avoid
potential confusion, we have decided to leave the NC
coordinates and the NC wave functions Ψ (operators
on the Fock space) as they are, and to denote the
operators acting on Ψ with a hat from now on.
The generators of rotations in Hλ, orbital mo-

mentum operators, are defined as

L̂jΨ = 1
2λ (xjΨ−Ψxj), j = 1, 2, 3. (11)

They are hermitian and obey the usual commutation
relations

[L̂i, L̂j ]Ψ ≡ (L̂iL̂j − L̂jL̂i)Ψ = iεijkL̂kΨ. (12)

The standard eigenfunctions Ψjm, j = 0, 1, 2, . . . ,
m = −j, . . . ,+j, satisfying

L̂2
iΨjm = j(j + 1)Ψjm, L̂3Ψjm = mΨjm, (13)

are given by

Ψjm =
∑
(jm)

(a+
1 )m1(a+

2 )m2

m1!m2! Rj(r)
an1

1 (−a2)n2

n1!n2! . (14)

The summation goes over all nonnegative integers that
satisfy

m1 +m2 = n1 + n2 = j,m1 −m2 − n1 + n2 = 2m.

For any fixed Rj(r) equation (14) defines a represen-
tation space for a unitary irreducible representation
with spin j.

The NC analog of the usual Laplace operator is

∆̂λΨ = − 1
λr

[â+
α , [âα,Ψ]]

= − 1
λ2(N + 1) [â+

α , [âα,Ψ]]. (15)
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As to the operator Û , the NC analog of the central
potential, it is defined simply as the multiplication
of the NC wave function by U(r):

(ÛΨ)(r) = U(r)Ψ = ΨU(r). (16)

Since any term of Ψ ∈ Hλ consists of the same number
of creation and annihilation operators (any commuta-
tor of such a term with r is zero), there is no difference
between left and right multiplication by U(r).

So finally here is the definition of our NC Hamil-
tonian:

ĤΨ = ~2

2mλr [â+
α , [âα,Ψ]]− q

r
Ψ. (17)

The coordinate operator x̂j acts on Ψ symmet-
rically as

x̂jΨ = 1
2(xjΨ + Ψxj). (18)

As to the velocity operator, clearly it should be in
some relation with the evolution of the coordinate
operator. The NC analog of the time derivative is
proportional to the commutator of the quantity con-
sidered with H; so the components of the velocity
operator are given by

V̂jΨ = −i[x̂j , Ĥ]Ψ. (19)

Both sets of NC observables, V̂j and x̂j , have been
introduced in [10]. As we see below, they are well
adapted to the construction of the NC analog of the
LRL vector.

Based on what has been briefly summarized above,
theNC analog of the Schrödinger equation with
the Coulomb potential in R3

λ can be postulated:

~2

2mλr [â+
α , [âα,Ψ]]− q

r
Ψ = EΨ. (20)

To avoid overloading the formulas, we usually set
m = 1, ~ = 1 below.

3. Dynamical symmetry in NCQM
It is time to address the NCQM version of the
Coulomb-Kepler problem. Our task is to find sen-
sible analogs of the three components Ai of the LRL
vector in such a way that all the requirements regard-
ing commutation relations are met (the commutator
with the Hamiltonian has to be zero because of the
conservation law and relations among all components
of ~A and ~L are supposed to correspond to the rele-
vant symmetry). Recall the subtlety which had to be
taken into account when the standard QM version of
the LRL vector had been built based on the classical
model. The cross product of velocity and angular
momentum needed symmetrization due to their non-
vanishing commutator. The NC operators that we are
going to use when constructing the analog of the cross
product part, i.e. V̂i, L̂i, do not commute either, so
some adjustment of this sort will also have to be made.

However, there is also another, “potential” part of the
LRL vector, which is proportional to ~r/r. The cor-
responding NC analogs of xi and Ψ do not commute
either, so we resolve the ordering in a similar way as
in the cross product case — we take x̂k instead of xk:

Âk = 1
2εijk(L̂iV̂j + V̂jL̂i) + q

x̂k
r
. (21)

It has turned out that besides coping with the or-
dering dilemma, nothing more needs to be done - that
is, except for doing the calculations to show that our
definition of Âk has been a good choice.
So now we are going to take the NC analogs of

the Hamiltonian, velocity, angular momentum and
position operators, and build the NC LRL vector
according to (21).
Then we have to move to the next task - evaluate

the commutator [Âi, Ĥ], examine the commutation
relations between Âk and L̂k, searching for the signs
of a higher dynamical symmetry. As soon as the
symmetry group is recognized, we can construct the
corresponding Casimir operators.

All these crucial operators: the Hamiltonian, veloc-
ity, angular momentum and position operators, have
been defined already in terms of creation and anni-
hilation operators a+

α , aα; knowing the commutation
relations for these, one can calculate all that is re-
quired. However, after writing it all down and trying
to make heads and tails of it, we soon realize that
the problem is not assigned in the most friendly way.
This definitely seems to be a case in which introduc-
ing some auxiliary quantities may help. There are
certain combinations of a+

α , aα that occur often in our
expressions, and separating them the right way makes
the calculations more manageable.

3.1. Auxiliary operators
We have to examine how the operators considered
here act on the wave function Ψ. They are expressed
in terms of â+

α , âα. In general it makes a difference
whether the creation and annihilation operators act
from the right or the left and the following notation
seems to be useful to keep track of it:

âαΨ = aαΨ, b̂αΨ = Ψaα, (22)
â+
αΨ = a+

αΨ, b̂+
αΨ = Ψa+

α . (23)

An advantage of this notation is the fact that now we
do not have to drag Ψ into the formulas just to make
clear which side the operators act from. The relevant
commutation relations are (see (5))

[âα, â+
β ] = δαβ , [b̂α, b̂+

β ] = −δαβ . (24)

The other commutators are zero. This, when kept in
mind, spares a lot of paper during the calculations.
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As it was already mentioned, we use the position
operator in the form

x̂iΨ = 1
2(xiΨ + Ψxi) = λ

2σ
i
αβ(â+

α âβ + b̂β b̂
+
α )Ψ,

r̂Ψ = 1
2(rΨ + Ψr) = λ

2 ((â+
α âα + 1) + (b̂αb̂+

α + 1))Ψ.
(25)

The following sequences of operators appear often
and their role is important enough to admit that they
deserve some notation on their own:

Ŵk = σkαβ(â+
α âβ − â+

α b̂β − âβ b̂+
α + b̂+

α b̂β),

Ŵ = â+
α âα − â+

α b̂α − b̂+
α âα + b̂+

α b̂α,

Ŵ ′k = Ŵk − 2λEx̂k,
Ŵ ′ = Ŵ − 2λEr̂, (26)

where E is energy and λ is the NC parameter already
mentioned. Note that the only difference between Ŵ ′k
and Ŵk is the constant multiplying one of their terms.
Ŵ ′ and Ŵ are related similarly.

3.2. NC operators revisited
Now we rewrite the Hamiltonian, the velocity operator
and the NC LRL vector in terms of the new auxiliary
operators which have been introduced.

Ĥ = 1
2λr̂ (â+

α âα + b̂+
α b̂α − â+

α b̂α − âαb̂+
α )− q

r̂

= 1
2λr̂ Ŵ −

q

r̂
, (27)

V̂i = −i[x̂i, Ĥ] = i

2r̂ σ
i
αβ(â+

α b̂β − âβ b̂+
α ) (28)

Âk = 1
2εijk(L̂iV̂j + V̂jL̂i) + q

x̂k
r̂

= 1
2r̂λ (r̂Ŵ ′k − x̂k(Ŵ ′ − 2λq)). (29)

Deriving equations (28) and (29) involves somewhat
laborious calculations. The details can be found in [7].
This gives us an opportunity to write the NC

Schrödinger equation in the following way:

( 1
2λr̂ Ŵ−

q

r̂
−E

)
ΨE = 1

2λr̂ (Ŵ ′−2λq)ΨE = 0. (30)

ΨE belongs to HEλ , i.e. to the subspace spanned by
the eigenvectors of the Hamiltonian.
The important quantity for us is Âk|HE

λ
, the LRL

vector as it acts on the solutions of the Schrödinger
equation:

Âk|HE
λ

= 1
2r̂λ (r̂Ŵ ′k− x̂k (Ŵ ′ − 2λq)︸ ︷︷ ︸

see Eq. (30)

) = 1
2λŴ

′
k. (31)

When dealing with calculations related to the con-
servation of Âk, we just need to ascertain whether the
following commutator with the Hamiltonian vanishes:

˙̂
W ′k = i

[
Ĥ0 −

q

r̂
, Ŵ ′k

]
= i
[ 1

2r̂λŴ
′ − q

r̂
, Ŵ ′k

]
= i

2r̂λ

[
Ŵ ′, Ŵ ′k

]
+ i
[1
r̂
, Ŵ ′k

](Ŵ ′
2λ − q

)
= 0. (32)

The second term in the second-to-last line vanishes
when acting on vectors from HEλ (and we are not so
interested in the rest of Hλ). The first term propor-
tional to [Ŵ ′, Ŵ ′k] does not contribute either. The
calculations proving this involve more steps and can
be found in [7].

The equation above encourages one to search for the
underlying SO(4) symmetry, since the LRL vector
conservation makes its components suitable candi-
dates for half of its generators, the remaining three
consisting of the components of the angular momen-
tum. Once again we have to ask the reader either
to check [7] for details or simply to believe that the
following holds:

[Âi, Âj ] = iεijk(−2E + λ2E2)L̂k (33)

There is nothing but a constant in the way, as long
as we let the operator [Âi, Âj ] act upon the vectors
from HEλ with the energy fixed. Eq. (33) and

[L̂i, L̂j ] = iεijkL̂k, [L̂i, Âj ] = iεijkÂk (34)

define Lie algebra relations corresponding to a particu-
lar symmetry group, the actual form of which depends
on the sign of the E-dependent factor in (33). The
relevant relations for L̂i have already been mentioned,
the formula for the mixed commutator [L̂i, Âj ] follows
from the fact that Âj , j = 1, 2, 3, are components of
a vector.

There are three independent cases:
• SO(4) symmetry:

−2E + λ2E2 > 0 ⇐⇒ E < 0 or E > 2/λ2;

• SO(3, 1) symmetry:

−2E + λ2E2 < 0 ⇐⇒ 0 < E < 2/λ2;

• E(3) Euclidean group:

−2E + λ2E2 = 0 ⇐⇒ E = 0 or E = 2/λ2.

The admissible values of E should correspond to
the unitary representations of the symmetry in ques-
tion. This requirement guarantees that the generators
L̂j and Âj are realized as hermitian operators, and
consequently correspond to physical observables. The
Casimir operators in the mentioned cases are

Ĉ ′1 = L̂jÂj ,

Ĉ ′2 = ÂiÂi + (−2E + λ2E2)(L̂iL̂i + 1). (35)
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The prime indicates that we are not using the standard
normalization of Casimir operators.

Now, we need to calculate their values in HEλ . The
first Casimir vanishes in all cases due to the fact
that Ĉ ′1ΨE ∼ rΨE −ΨEr = 0. The second Casimir
operator is somewhat more demanding. According to
(31) we have

Ĉ ′2ΨE =
(Ŵ ′iŴ ′i

4λ2 + (−2E + λ2E2)(L̂iL̂i + 1)
)

ΨE

= 1
4λ2 Ŵ

′Ŵ ′ΨE , (36)

where we used the quadratic identity

Ŵ ′iŴ
′
i + 4λ2(−2E + λ2E2)(L̂iL̂i + 1) = Ŵ ′2. (37)

According to the Schrödinger equation, (Ŵ ′)2ΨE =
4λ2q2ΨE , and we are left with

Ĉ ′2ΨE = q2ΨE . (38)

Since both Casimir operators take constant val-
ues Ĉ ′1 = 0 and Ĉ ′2 = q2 in HEλ , we are deal-
ing with irreducible representations of the dynam-
ical symmetry group G that are unitary for partic-
ular values of energy. In all the cases considered,
G = SO(4),SO(3, 1), E(3), the unitary irreducible
representations are well known. The corresponding
systems of eigenfunctions that span the representation
space have been found in [9]. Here we do not repeat
their construction, but we restrict ourselves to brief
comments pointing out some interesting aspects.

3.3. Bound states – the case of SO(4)
symmetry −2E + λ2E2 > 0

In this case we rescale the LRL vector as

K̂j = Âj√
−2E + λ2E2

=
Ŵ ′j

2λ
√
−2E + λ2E2

. (39)

After this step Eqs. (33), (34) turn into the following
relations:

[L̂i, L̂j ] = iεijkL̂k,

[L̂i, K̂j ] = iεijkK̂k,

[K̂i, K̂j ] = iεijkL̂k. (40)

Thus we have got the representation of the so(4)
algebra. The relevant normalized Casimir operators
are

Ĉ1 = L̂jK̂j , Ĉ2 = K̂iK̂i + L̂iL̂i + 1. (41)

As we have stated already, the Ĉ1 acting on an eigen-
function of the Hamiltonian returns zero. As to Ĉ2,
we know that for so(4), under the condition that the
first Casimir is zero, the second Casimir has to be
equal to n2 for some integer n = j+ 1, j+ 2, . . . (with
j(j + 1) corresponding to the square of the angular

momentum). At the same time, according to (38) it
is related to the energy:

K̂iK̂i + L̂iL̂i + 1 = q2

λ2E2 − 2E = n2. (42)

Now solving the quadratic equation for energy we
obtain two discrete sets of solutions depending on n:

E = 1
λ2 ∓

1
λ2

√
1 + κ2

n, κn = qλ

n
. (43)

The first set of eigenfunctions of the Hamiltonian in
(17) for energies E < 0 (i.e. negative sign in front of
the square root in (43)) has been found for Coulomb
attractive potential, i.e. q > 0 in (17):

EIλn = 1
λ2 −

1
λ2

√
1 + κ2

n. (44)

These eigenvalues possess a smooth standard limit for
λ→ 0

EIλn = 1
λ2 −

1
λ2

(
1 + 1

2κ
2
n −

1
24κ

4
n + · · ·

)
→ − q2

2n2 = − q2m

2n2~2 . (45)

This spectrum coincides (in the commutative limit
λ→ 0) with the spectrum for Coulomb attractive po-
tential, q > 0, that was found by Pauli using algebraic
methods prior to solving Schrödinger equation for the
hydrogen atom.
The full set of eigenfunctions of (17) for energies

E < 0 was constructed in [9] by explicitly solving
the NC Schrödinger equation. The radial NC wave
functions defined in (14) are given in terms of the
hypergeometric function

RIλn = (Ωn)NF (−n,−N, 2j + 2,−2κnΩ−1
n ),

Ωn =
κn −

√
1 + κ2

n + 1
κn +

√
1 + κ2

n − 1
, (46)

where N = a+
αaα controls the radial NC variable.

The second set of very unexpected solutions corre-
sponds to energies (43) with positive sign

EIIλn = 1
λ2 + 1

λ2

√
1 + κ2

n >
2
λ2 . (47)

The corresponding radial NC wave functions have
been found in [9] solving NC Schrödinger equation for
a Coulomb repulsive potential, q < 0 in (17). These
radial NC wave functions are closely related to those
given above

RIIλn = (−Ωn)NF (−n,−N, 2j + 2, 2κnΩ−1
n ). (48)

Both SO(4) representations, the representation for
Coulomb attractive potential with EIλn < 0 and that
for ultra-high energies EIIλn > 2/λ2 for Coulomb re-
pulsive potential, are unitary equivalent as in both
representations the Casimir operators take the same
values, Ĉ1 = 0 and Ĉ1 = n2. However, physically they
are quite distinct: In the commutative limit λ → 0
the first bound states persist and reduce to the stan-
dard ones, while the extraordinary bound states at
ultra-high energies disappear from the Hilbert space.
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3.4. Coulomb scattering – the case
2E − λ2E2 > 0

In this case we rescale the LRL vector as

K̂j = Âj√
2E − λ2E2

=
Ŵ ′j

2λ
√

2E − λ2E2
. (49)

After this step we obtain equations

[L̂i, L̂j ] = iεijkL̂k,

[L̂i, K̂j ] = iεijkK̂k,

[K̂i, K̂j ] = −iεijkL̂k. (50)

So this time we have obtained the representation of
the so(3, 1) algebra. The relevant normalized Casimir
operators are

Ĉ1 = L̂jK̂j , Ĉ2 = K̂iK̂i − L̂iL̂i. (51)

In our case Ĉ1 = 0, so we are dealing with SO(3, 1)
unitary representations that are labeled by the value
of second Casimir operator Ĉ2. Rewriting (38) in
terms of K̂j we obtain relation between energy E and
the eigenvalue τ of Ĉ2:

K̂iK̂i − L̂iL̂i = 1 + q2

2E − λ2E2 = τ > 1. (52)

Thus we are dealing with the spherical principal series
of SO(3, 1) unitary representations, see e.g [11].
The scattering NC wave functions have been con-

structed in [9] for any admissible energy E ∈ (0, 2/λ2),
and from their asymptotic behavior the partial wave
S-matrix has been derived

Sλj (E) =
Γ(j + 1− i qp )
Γ(j + 1 + i qp ) , p =

√
2E − λ2E2. (53)

It can be easily seen that such S-matrix possesses
poles at energies E = EIλn for Coulomb attractive
potential and poles at energies E = EIIλn for Coulomb
repulsive potential, where both EIλn and EIIλn coincide
with (44) and (47) given above. As for energies

Eλ∓ = 1
λ2

(
1∓

√
1− λ2q2

τ − 1

)
(54)

the Casimir operator values coincide, the correspond-
ing representations are unitarily equivalent. This re-
lates the scattering for low energies 0 < E < 1/λ2 to
that at high energies 1/λ2 < E < 2/λ2.
We skip the limiting cases of the scattering at the

edges E = 0 and E = 2/λ2 of the admissible interval
of energies, where the SO(3, 1) group contracts to the
Euclidean group E(3) = SO(3) . T (3) of isometries
of 3D space. The corresponding NC Hamiltonian
eigenstates are given in [9].

4. Conclusions
This paper deals with the Coulomb-Kepler problem
in noncommutative space. We have found the NC
analog of the LRL vector; its components, together
with those of the NC angular momentum operator,
supply the algebra of generators of a symmetry group.
It is interesting that the formula for the NC version
of the LRL vector looks very much like the one from
standard QM, that is, when written in terms of the
proper NC observables: NC angular momentum, NC
velocity, symmetrized NC coordinate and NC radial
distance.
It is quite remarkable that the SO(4) symmetry

has appeared twice: Firstly, not so surprisingly, when
addressing the problem of the bound states for neg-
ative energies in the case of the attractive Coulomb
potential. These have an analog in standard quantum
mechanics, and our result for negative energy bound
states indeed coincides with the well known QM pre-
diction if the commutative limit λ→ 0 is applied. The
second appearance of the SO(4) symmetry is probably
not so expected, for we have found a set of bound
states for positive energies above a certain ultra-high
value in the case that the potential is repulsive. How-
ever, there is again no discrepancy between QM and
NCQM, since the unexpected ultra-high energy bound
states disappear from the Hilbert space in the above
mentioned commutative limit.
When examining the scattering (relevant for the

interval of energies between zero and the mentioned
critical ultra-high value), SO(3, 1) is the symmetry to
be considered. The scattering is usually characterized
by the S-matrix. In the NC version of the problem
this object has exactly those poles in complex energy
plane which correspond to the bound states (of both
kinds) mentioned above. This goes, however, beyond
the scope of this paper.
To summarize, there are basically two ways of ex-

amining the hydrogen energy spectrum: by solving
some differential equation in Schrödinger fashion or
by looking for an underlying symmetry and using
an algebraic approach à la Pauli. Both possibilities
were tried in NCQM (the aim of this paper has been
mainly to provide some outline of the latter option),
for details see [7], [9]. We are glad to find out that
both approaches (agreeing in standard QM) lead to
the same outcomes also in NCQM.
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