
1 Introduction

Turbulent submerged axisymmetric jets are of interest in
many engineering applications. They are formed by outflow
of fluid from an axisymmetric nozzle into an unbounded
space containing a similar or same fluid at rest. The distin-
guishing feature of submerged jets (as opposed to free jets)
is that the external fluid is entrained into the jet. As a con-
sequence of the entrainment, the jet diameter gradually
increases in the axial direction – while its velocity decreases
(for momentum preservation). The subject of the present in-
vestigation is steady jet flow, with parameters not dependent
upon time. The usual simplifying assumptions are adopted:
the external fluid is the same as the jet fluid and the nozzle
exit is circular. The interest is limited to the fully developed
jet – neglecting the development that takes place immedi-
ately downstream from the nozzle exit. Also neglected in the
present approach (as is common in other analogous solu-
tions – e.g., [2], [3], [4], [5], … etc.) is the intermittence effect
on the jet boundaries, where a purely turbulent flow regime
alternates with laminar flow of the entrained external fluid.
This, of course, influences the conditions on the extreme ends
of the evaluated profiles away from the jet axis, where, how-
ever, the solution is of less practical interest, and is in any case
difficult to verify experimentally.

The fully developed jet possesses an important property
of similarity: Profiles of various quantities – such as the veloc-
ity profile shown in the example Fig. 1 – evaluated at various
downstream distances X1 are of mutually similar shape. This
similarity property permits us to convert the governing par-
tial differential equations into ordinary differential equations
(which, of course, are much easier to solve). The similarity so-
lutions based upon this idea are standard in the case of the
laminar jet [1]. In most engineering applications of jet flows,
however, velocities and dimensions are sufficiently large for
the flow to be turbulent. Turbulence causes the governing
equations to be much more complex – so much that there is
a general belief that the only way to solve turbulent jet flows
is numerical computation based upon the grid method. Such
numerical results, of course, are only valid for a particular set

of boundary conditions, and do not provide a universal solu-
tion of general validity, which is the object of interest here.

There is a universal solution of an axisymmetric turbulent
jet known since 1926, derived by Tollmien [3], [1], [17]. Its
deficiency is the use of a simple, algebraic model of turbu-
lence. The basic assumption of this model is that turbulence
is everywhere in a state of equilibrium: local turbulence pro-
duction is assumed to be equal to local turbulence dissipation
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Fig. 1: Schematic representation of the computed jet flow and its
typical profile of time-mean axial velocity. The illustration
also serves to define the orientation of the used co-ordi-
nate axes X1 and X2.



rate. This is not true in real jets – mainly in the vicinity of
the jet axis, where turbulent fluctuations are transported by
advective and diffusion effects. As a result, Tollmien’s solution
is known to disagree with experimental data, in particular in
the vicinity of the jet axis.

In earlier publications [4] and [5], the present author
succeeded in obtaining satisfactory general solution with ad-
vanced models of turbulence in the related problem of the
plane turbulent jet, using one-equation [4] and two-equa-
tion [5] turbulence models. These are capable of taking into
account the spatial transport of turbulence [1]. The axi-
symmetric jet, which is of interest here, was recently also
solved with the one-equation model [2]. While this model can
account for both advective and diffusive transport, its fails
to predict the distribution of the characteristic length scale
of turbulence. This was circumvented in [2] by adopting
Tollmien’s [3] assumption of the length scale being constant
across each section of the jet. The results may be described
as rather successful, when compared with experimental
data – indicating that Tollmien’s assumption, in spite of its
simplicity, is a good approximation to real conditions. Never-
theless, a better approach, not requiring any preliminary
assumptions, has been desirable also for the present axisym-
metric jet problem. Such a solution is described in this paper.
It uses the two-equation model of turbulence that makes it
possible to evaluate, just from basic principles, the spatial dis-
tributions of all parameters of turbulence, including its length
scale.

2 The equation of the flowfield
The governing equation of the axisymmetric jet flow-

field problem is the streamwise specific momentum transport
balance in the form valid for cylindrical geometry. Jets are
slender enough objects for Prandtl’s version of diffusive trans-
port effect (neglect of longitudinal diffusion) to be applicable.
It is assumed that turbulent eddies move in a stochastic
manner, without preference for any direction – so that the
turbulence, being isotropic, may be characterised by a scalar
quantity �t, turbulent viscosity. The longitudinal co-ordinate
X1 (Fig. 1) is assumed to coincide with the nozzle axis, while
the transverse co-ordinate X2 determines the radial direction
measured away from the axis. In notation according to [1] the
equation is written as:

� �w w
Xt

t
1 1 2

1
P�

�
� � . (1)

The right-hand side of Eq. (1) represents the effect of
radial divergence. The left-hand side represents the spatial
transport effect. These are expressed by means of the
turbulent left-acting Prandtl transport operator � �P� t , which
expresses the effects of two transport phenomena: advection
and gradient diffusion (with neglected longitudinal diffusion)
respectively. It may be decomposed into:

� �P� �t t� �� ��w 2 2 (2)

where the first term, in the present two-dimensional context
equal to�w � � � �1 1 2 2w w , is a scalar product of two vectors,
� and w. It represents the operator of the two mutually
orthogonal components of advective transport. The second
term, on the other hand, represents the operator of turbulent
diffusion (with �t variable in space).

The solution of Equation (1) leads to evaluation of the
spatial distribution � 	w f1 � X of the axial component w1 of
the time-mean velocity vector

w �



�
�



�
�

w
w

1

2
(3)

while the mass conservation condition (again written for the
cylindrical geometry case)

w� � �w X2 2 0 (4)
will take care of the other, transverse velocity component, w2.
To evade the necessity of testing the results as to the validity
of Eq. (4), it is expedient to transform Eq. (1) into an
equivalent equation for the spatial distribution of the stream
function �:

w X1 2 2� �� (5)

w X2 1 2� � �� (6)
so that all solutions obey Eq. (4) identically.

After decomposition into terms corresponding to individ-
ual transport effects, Eq. (1) may be written as consisting of
the following five terms:

� 	� 	w w w w w w w
X1 1 1 1 2 2 1 2

2
2 1 2 1 2

1
� � � � � � � � � �� �

�
t t

t . (7)

3 Model of turbulence
The turbulent viscosity (or “eddy viscosity”) �t , appearing

in the governing Equation (1) is in, general, equal to
�t t� �w � (8)

where wt is the velocity scale of turbulent fluctuations,

w c et v f� (9)

and � is the turbulence length scale

� � c ez f
3 � (10)

evaluated from the specific kinetic energy of turbulent
fluctuations ef [m2/s2] and from turbulence dissipation rate
� [m2/s3], so that

� �t z
f� c c

e2

�
. (11)

In equilibrium turbulence, the two model constants c� and
cz are mutually dependent, and according to [1] there is

c c� � �z3 0548. . (12)
This relation need not hold in general turbulence. Neverthe-
less, it was used as a convenient simplifying assumption in the
present computations.

The two quantities ef and � must be evaluated from the
simultaneously solved two equations of the turbulence model.

The first of them is the transport equation for the energy
of fluctuations:

� �e e
Xf f

t
tP�

�
� � � �P � 2

1
(13)

Again, as in Eq. (1), the assumption of a slender shear re-
gion permits us here to apply the Prandtl approximation
for spatial transport effects, as expressed by the Prandtl trans-
port operator on the left-hand side of the equation. On the
right-hand side, [m2/s3] is the turbulence energy produc-
tion rate

� 	P � �w1 2
2
�t (14)
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while the other terms in Eq. (13) are the dissipation rate �
and the radial divergence effect term.

Applying the same decomposition for the Prandtl opera-
tor as in Eq. (1) and Eq. (7), it is possible to rewrite Eq. (13) as
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f f f t t f
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t
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� .
(15)

The other equation of the turbulence model describes the
spatial transport of the specific dissipation rate of turbulent
fluctuation energy:

� �� � � � ��P�
�

t
tU Y

X2
1

(16)

where U [m2/s4] is dissipation production rate and Y [m2/s4] is
the destruction rate, while the last term on the right hand
side, similarly as in Eq. (1) and (13), represents the effect of
radial divergence. Decomposition of the Prandtl operator
leads cf. Eq. (13) and Eq. (15) and [1] to:
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(17)

In this case, the coefficient of gradient diffusion �� [m2/s]
is evaluated from the eddy viscosity and from the assumed
knowledge of the corresponding Prandtl number

Pr�
�

�
�

�

t . (18)

The standard recommended value [1] is Pr� �1 3. . Note that
the analogous Prandtl number could also be introduced in
Eq. (13). There, however, its assumed value is 1.0 (this is
equivalent to assuming identical transport of momentum and
fluctuation energy by turbulent motions), in common with
standard turbulence modelling practice.

The model constants cU and cY introduced in Eq. (18)
are mutually related in equilibrium near-wall turbulence, as
shown in [1],

c c
c cY U

Z
� �

�

�

2

Pr �

(19)

where � is the von Kármán constant. The standard value
of cU, evaluated from turbulence decay rate downstream
from grids, is cU = 1.44.

Solutions of the transport Equations (13) and (16) provide
the spatial distributions � 	e ff � X and � 	� � f X . Inserting
them into Eq. (11) makes possible evaluation of the spatial
distribution of the turbulent viscosity � 	�t � f X . Inserting
them into Eq. (11) makes possible evaluation of the spatial
distribution of the turbulent viscosity and its transverse deriv-
ative needed in all three transport equations:

� � �t f Z
f

Z
f� � �

�
� �

�
2 2 2

2
2e c c

e
c c

e
� . (20)

In the present solution, in line with previous treatments of
jet flows in [2], [4], and [5], a high turbulence Reynolds

number Ret
t� � �

�

�
is assumed.

4 The similarity transformation
Transformation of equations into the similarity form is

based upon measurement of transverse distances by a scale
which varies in the axial direction in proportion to the local
jet diameter. Similarly, velocities are measured by a velocity
scale which, at every jet cross section, is proportional to local
maximum velocity wm. This decreases in the axial direction
according to power-law

w Xm ~ 1
� (21)

with a negative exponent �. The initial task is to determine
the magnitude of this exponent. The next task is determina-
tion of the the exponent in the jet diameter axial growth
power-law

� �~ X1 . (22)

The discussions presented e.g. in [1] and [2], supported by
experimental verifications, indicate that there is

� �1 (23)

and from constancy of axial momentum flow rate [1] there is

� � �1. . (24)

The similarity transformation is achieved by introducing the
following similarity variables:

a) Relative transverse co-ordinate
is to be of the form

�
�

~
X
X

2

1

.

To remove constants that would otherwise appear in the
resultant equation, it is proper – according to [3] – to intro-
duce the definition

�
�

�
X

c c X
2

1z
. (25)

In agreement with usage in [1] as well as [2], [4], and [5],
differentiation with respect to this similarity co-ordinate is
denoted by a nonindexed left-acting operator

� �
d

d�
.

b) Relative longitudinal velocity
should have the form

u
w
X

� 1

1
�

(26)

related to the local maximum velocity wm (Eq. (21)) on
the jet axis. Introducing proportionality constant m (needed
for dimensional reasons), we can write

u
w X

m
� 1 1 . (27)

c) Relative kinetic energy:
Using maximum velocity on the jet axis as the reference, a

suitable definition for the transformed similarity variable is

	 � �
e

w
e X
m

f

m

f
2

1
2

2 . (28)

d) Transformation for the relative turbulence dissipation rate:

j
X

m
�

� 1
4

3 . (29)
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Relative stream function f is then required so that it will be
possible to transform Eq. (5) into a corresponding expression
with similarity-transformed variables

u � �f � . (30)
Inserting the above definitions into Eq. (5) leads to the

following relation between � and f:
� � f zc c mX� 1 . (31)

In order to perform the transformation of Eq. (1), the fol-
lowing conversions need first to be evaluated:

Analogous transformation of Eq. (13) requires evaluation
of terms:

To transform Eq. (16) then requires evaluation of terms:

Finally, it is also necessary to transform the expressions
with the eddy viscosity, Eq. (11) and Eq. (20):
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The expressions in the above boxes are inserted into the
three transport Equations (1), (13), and (16) – preferably in
their expanded forms – Equations (7), (15), and (17).

For reasons of convenience (elimination of higher deriva-
tives in equations) and also for the interesting meaning of the
introduced additional variables it is useful to introduce the
following auxiliary variables:
– relative transverse gradient of velocity g u� �,
– relative gradient of turbulence energy n � �	 ,
– relative gradient of dissipation rate z j� �.

Derivatives of the transformed stream function may be
eliminated from the transformed equations by substitutions
using Eq. (30) together with expressions derived from
Eq. (30) by differentiation:

f

f

f

� �

� � �
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u

g u

g g

�



The two systems Eq. (32) and Eq. (33) appear to be very
nearly identical, the only exception being the additional 1/�
terms within the first pair of brackets on the right-hand sides
of the equations for the axisymmetric case, Eq. (32). Since the
original partial differential equations of the problem before
transformation differ only in there being the additional radial
divergence term in the axisymmetric case, it would seem to be
almost without doubt that the additional 1/� term in the
transformed equations is the result of similarity transforma-
tion of the original radial divergence terms – the last term in
Eq. (1), (13), and (16). It is surprising that the situation is actu-
ally far from being so simple. In spite of the similar structure
before as well as after transformation, the seemingly corre-
sponding transformed terms may be of completely different
origin and meaning – the above mentioned 1/� term in fact
does not stem from the radial divergence term in the equa-
tion for n, but it results from the diffusion term in the equa-
tion for g! This completely different origin of what seem to
be corresponding and perfectly analogous terms is a very
strange feature of the solved system of equations.

6 Boundary conditions
The system (Eq. (32)) of simultaneous equations is subject

to the following obvious boundary conditions on the jet axis,
at � = 0:

uax �1 … from w w1 � m
fax � 0 … from w2 0�
gax � 0 … for zero velocity profile slope
nax � 0 … for zero ef profile slope
zax � 0 … for zero 	 profile slope

zero values of the nondimensional gradients due to profile
symmetry.

These are, unfortunately, only five conditions instead of
the seven required for solution of the seven Equations (32).
This is a typical example of a problem of split boundary con-
ditions: the sixth and seventh values, 	ax and jax at � = 0 need
be adjusted so as to fulfill the required values � = 0 and j = 0
at the other end of the integration region, at � � �.

The problem of finding the proper values �ax and jax at
� = 0 is not easy. Since the unknown valeus are two and the
integrated equations are extremely sensitive even to minute
changes, the use of the usual ”shooting method” is hardly
practicable. Fortunately, its is possible to base the starting
values upon the results of the earlier one-equation model
solution [2]. It may be useful to recall that the solution found
in [2] is not unique: the equations are fulfilled for any value of
the dimensionless parameter cZ/ks dependent on jet diameter
growth factor s and mixing length factor k. The proper value
of the parameter was evaluated by comparison with
experiments. In [2], the value

c k sZ 0 5 9108401. .� (34)

was found by adjusting the jet growth factor s0.5 to the magni-
tude evaluated for the classical Trüpel (1915) experiment.
The value Eq. (34) led to the relative specific energy of turbu-
lent fluctuations on jet axis

	ax � 007614. (35)

and to relative specific energy dissipation rate on the axis

j
c
k sax

Z� �	3 2 01912. . (36)

These boundary values Eq. (35) and Eq. (36) were now
used as starting values in the present solution with the two-
-equation model.

7 Solution
There is still another problem associated with integration

of the Equation system (32). It is caused by the fact that what
seems to be the natural starting point of the integration
procedure, � = 0 cannot actually be used. The transformed
radial co-ordinate � appears in Equations (32) in denomina-
tor position, leading to infinite values of some terms there.
This is no substantial problem and was easily solved by shift-
ing the starting position a small distance away from the axis
and evaluating the shifted off-axis boundary conditions using
Taylor series expansion (in fact quite simple, because the most
important first derivatives are zero on the axis due to the
symmetry).

Standard values of turbulence model constants cZ and c�

from Eq. (12), as well as cY corresponding to

c c
c cU Y

Z
� � �

�

��

Pr
.

�

144 (37)

with von Kármán constant value �= 0.41 – were used. The
only deviation from the standard practice was to insert slight-
ly higher Pr .� �13837 in place of the usual Pr .� �13(for the
latter there being, after all, no physical justification anyway).
The higher value leads to better fulfillment of the boundary
conditions on the outer boundary (an effect which can also be
achieved by adjusting the conditions "ax and jax).

Integration of Eq. (32) was performed by a simple
computer program TES-AXI2EQ , using the standard
Runge-Kutta integration method. A complete listing of the
program is attached in the Appendix. Fig. 2 shows the
integration result: the half-profiles of the transformed axial
velocity u as well as its transformed transverse gradient g and
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Fig. 2: Solution of the governing Eq. (1) in terms of the three
similarity variables that determine velocities. This solu-
tion was obtained using the boundary conditions
evaluated in [2] for one-equation solution.



transformed stream function, f (an integral of velocity multi-
plied by radius). These quantities are plotted in Fig. 2 against
co-ordinate �, the similarity-transformed radius.

Fig. 3 then presents the analogous half-profiles of the
results obtained from simultaneous integration of the trans-

formed relative energy of turbulent fluctuations: there is
the relative energy 	 as well as its (transformed) transverse
gradient n, again plotted against the similarity transformed
radius �.

In a similar manner, Fig. 4 presents the evaluated half-
-profiles of the turbulence dissipation rate �, the spatial distri-
bution of which is described by Eq. (16).

In the present solution this quantity is computed mainly as
a means for evaluating the turbulence length scale using Eq.
(10).

8 Comparisons with experiments
The following several figures present comparisons of the

profiles resulting from the present solution with experimental
data. For plotting the present results in common co-ordinates
with experimental and other data, it is useful to use another
relative transverse co-ordinate, e.g., the co-ordinate � related

©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 33

Acta Polytechnica Vol. 41 No. 2/2001

Fig. 3: Solution of Equation (13) for turbulent fluctuation energy
in similarity transformed coordinates: relative magnitude
of fluctuation energy 	 and its transverse gradient n. Note
the extended vertical scale compared with Fig. 2.

Fig. 4: Solution of Equation (16) for turbulence dissipation rate in
similarity transformed coordinates: again, the transverse
gradient of the evaluated quantity is plotted (on a 10-times
decreased scale) in the bottom part of the diagram

Fig. 5: A comparison of the profile of axial time-mean velocity from the present solution (cf. Fig. 2) with classical experimental data



to the jet diameter at which the axial time-mean velocity
reaches one half of the local velocity maximum wm. For this
purpose, it was necessary to find the value of the transverse
similarity co-ordinate � in which relative velocity u attains the
value u = 0.5. There is

�0 5 03139412. .� . (38)

Fig. 5 shows a comparison with classical experimental
data, including data due to Trüpel (1915). It should
be stressed that although Trüpel’s data set was used in [2] for
evaluating boundary conditions Eq. (35) and Eq. (36) – the
values used also in the present computations – the almost

perfect agreement seen in Fig. 5 is certainly not due to any
mutual relationship.

The evaluation of boundary conditions in [2] used just a
single number from Trüpel’s experiment, its radius growth
factor s0.5. The agreement in the shape of the velocity profiles
is, therefore, a result of good modeling of the flow and its
turbulence. This may perhaps be proved by inspecting an-
other comparison with another experiment in Fig. 6, where
there is no such relation.

The apparent disagreement visible in this case near the jet
outer boundaries is of no importance, for several reasons.
First, the measurements the results of which are shown in
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Fig. 6: Another comparison of the velocity profile obtained by the present solution – as shown in Fig. 2 – with experimental velocity
profile data measured by a hot wire anemometer in the author’s laboratory

Fig. 7: Comparison of the profile of turbulent fluctuation energy obtained by the present solution – as shown in Fig. 3 – with results of
anemometric investigations (single component hot wire anemometer data evaluated using the assumption of isotropy of
turbulence)
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Fig. 6 were made using a hot wire anemometer. It is a typical
property of a hot wire sensor that it lacks the capability to
discriminate positive and negative velocity directions. Since
near the jet boundary the time-mean velocity is small and
the fluctuations are relatively very large, negative values occur
but are interpreted by the anemometer as positive values. As a
result, the apparent mean velocity data in this region tend to
be higher than the actual mean velocity – a trend which is in
line with what is seen in Fig. 6. Secondly, the present solution
is not intended to be exactly valid on the jet boundary,
because – as was already mentioned in the introduction – it
does not take into account the effects of intermittence.

Anemometric measurements performed by the present
author and his co-workers made possible not only evaluat-
ions of time-mean velocity, but also velocity fluctuation.
From the data on the latter, it is possible to calculate local
energy of turbulent fluctuations ef – under the somewhat
simplifying assumption of isotropy, which is necessitated by
the only single-channel available anemometer. The
experimental profiles of this fluctuation energy, converted –
according to Eq. (28) – to the nondimensional similarity
variable for which the transport equation is here solved, are
compared in Fig. 7 with the present theoretical solution
(corresponding to profiles from Fig. 3).

It is evident that the anisotropy assumption is not restric-
tive, and the experimental and theoretical profiles are in quite
good agreement. The surprising fact, however, is that this
agreement is arrived at, after gradual development, only at a
very large distance downstream from the nozzle. Note that
in the simultaneously made velocity measurements shown
in Fig. 6, the fully developed shape of the profile is attained
already at a distance several times shorter. The extreme
length of turbulence parameter development, equal to
around 60 nozzle exit diameters, does not seem to be known
or discussed in the available literature, where it is commonly
expressed (no doubt on the grounds of comparing only veloc-

ity data) that a fully development state is already attained at
10 or perhaps 15 nozzle diameters.

In order to investigate this interesting finding in detail,
experiments were performed during which the velocity fluc-
tuation was measured by a hot wire anemometer along the jet
axis. The results of these experiments are shown in Fig. 8. In-
creasing time scale of fluctuation with the downstream dis-
tance caused a rather large scatter of data at larger values
of X1. Nevertheless, the dependence demonstrates quite
clearly the asymptotic character of the approach to the value
Eq. (35), found by the similarity solutions both from [2] and
from the present analysis.

9 Turbulence length scale
Apart from the above described comparisons with experi-

mental data, it may be of interest to compare the present
results with what was obtained earlier in [2] with a less sophis-
ticated, one-equation model of turbulence. Fig. 9 compares
the half-profiles of the axial time-mean velocity computed
from the present solution (cf. Fig. 2) and from [2].

Both velocity profiles are nearly coincident – to the degree
that there seems to be no possibility to decide between them
on the basis of any conceivable experiment.

The main difference between the present two-equation
model solution and the earlier solution [2], which used the
one-equation model, is the closed character of the present
approach, not dependent upon outside information or as-
sumptions. The one-equation model required an assumption
on the spatial distribution of turbulence length (taken as
constant in [2]) and, to achieve unicity, some information
about the jet spreading rate. It may be of interest to see what
was accomplished by the present two-equation approach in
these two respects.

As for the length scale, its distribution across the jet cross
section may now be calculated from the present solution,
using the results on the distributions of fluctuation energy
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Fig. 8: Experimentally determined relative values of fluctuation energy on the jet axis as a function of the downstream distance from the
nozzle exit



(Fig. 3) and dissipation rate (Fig. 4), with the use of Eq. (10)
and of the values of constants Eq. (12). In Fig. 10, values
obtained this way are shown in the form of their ratio to the

constant turbulence length of the earlier solution [2]. There
was, in [2],

�1 1EQ � k s X (39)
while the present 2EQ is given by Eq. (10). Using the defini-
tions Eq. (28) and Eq. (29), the ratio of the two lengths is

�
	

� �
c
k s j

Z
3 2

. (40)

In Fig. 10, it is immediately apparent that the length scale
distribution resulting from the present solution changes only
insignificantly across the jet profile. Indeed, an indication of
the small changes of length scale across the profiles was visible
from the small difference between the two solutions in Fig. 9
and, in fact, already from the similar shapes of the curves in
Figs. 3 and 4 (with constant cZ cf. Eq. (10)). This insignificant
variation provides an explanation of the apparent success of
earlier jet solutions, beginning with [3] and including [2],
which assumed the length scale to be simply constant across
the jet.

10 The illusory “plane jet/round jet
anomaly”

While in the simpler previous solution [2] it was
necessary to evaluate the jet diameter growth using
information obtained from experimental data, the closed
character of the present two-equation solution makes possible
direct evaluation of the jet spreading rate. In fact, the
information about jet spreading resulting from the present
solution made possible one of important results of this paper.
It is a clarification of what for a considerable time has been
one of the basic problems of turbulence modelling: the
unresolved problem of the ”round-jet/plane-jet spreading
anomaly”. According to assertions in the most authoritative
literature on the subject – e.g. [11] – computations with the
present standard two-equation turbulence models, while
predicting plane jets properly, are believed to fail when
applied to axi-symmetric jets. In particular, computed
spreading rates are said to be between 25 % and 40 % larger
than experimental spreading rates – as shown in Fig. 11.

Such a discrepancy is believed to be a manifestation of
a fact that there are physical mechanisms participating in the
dissipation process, that have so far not been taken into
account in usual turbulence models. Attempts to remove the
anomaly have led to various suggested alterations to the
model equation for the axisymmetric jet without, however,
any convincing success. Usually, as is the typical case of Pope’s
[12] adaptation of the two-equation model, the suggested
modifications remove the “round-jet/plane-jet anomaly” only to
exchange it for a spreading rate anomaly in other situations.
The reported absence of the anomaly in the Wilcox k – � [11]
model was at least partly the reason behind its popularity.
The comparisons in Fig. 11, however, are not really convinc-
ing. Furthermore, recent investigations (Speziale and Abid,
1995) show that the k – � model is hardly perfect, as it has
certain difficulties associated with assumed basic physics of
turbulence.

The present results, on the other hand, show that what is
known as the ”round-jet/plane-jet spreading anomaly” is only
a fictitious effect, caused by improper numerical values of
boundary conditions (and perhaps model constants) used by
earlier authors in their earlier computations. In Fig. 12, the
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Fig. 9: Comparison of the velocity profile computed from the
present two-equation model solution (round symbols)
with an earlier solution [2] based on the one-equation
model of turbulence (continuous line)

Fig. 10: The present two-equation model solution needs no pre-
liminary assumption about the turbulence length scale .
The distribution across the jet profile of length 2EQ com-
puted from the present solution is here compared with
the standard length 1EQ, constant across the profile.



velocity profiles from Fig. 11 are compared with the present
solution, which is re-plotted using the same transverse co-
-ordinate (which directly corresponds to the value of the
jet diameter growth constant) as in Fig. 11. Obviously, no
spreading anomaly is seen, although the present solution
shown in Fig. 12 uses standard model constants (with the
exception of the small adjustment in the value of Pr�, which is
irrelevant in the present context) as they are used also for the
plane jet solution.

Fig. 13 shows the error that was probably responsible for
the wrong behaviour of two-equation solution in Fig. 11:
without changes in model constants but with a different set

of boundary conditions "ax and jax, the curve that should
represent the ”standard two-equation solution” in [11] is quite
well computed by the present solution, using the computer
program TES-AXI2EQ as listed in the Appendix. In fact, by
slightly decreasing "ax below the value "ax = 0.1213 indicated
in Fig. 13, it is possible to achieve almost perfect coincidence
of the two curves – the slight mismatch was preferred for
presentation in Fig. 13 so that both curves may be individual-
ly recognisable. Obviously, the bad reputation of the
two-equation model was due to a similar erroneous set of
boundary conditions used in some earlier computations. It
should be stressed that such an error is extremely difficult to
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Fig. 11: This illustration is taken from [11]. It shows the common belief in the literature on axisymmetric jets, that computation using
the standard two-equation turbulence model leads to a wrong spreading rate. The model due to Wilcox [11] is proposed as
a remedy.

Fig. 12: The present results re-plotted in the same co-ordinates as used in Fig. 11 show that the spreading anomaly is a fictitious ef-
fect [10]: no anomalous spreading is found for the present solution with proper constants and proper boundary conditions



identify in usual computations based upon a grid solution
of partial differential equations – in particular in view of
another of the present findings, the extremely long way
towards equilibrium, as shown in Fig. 8 (computations are
seldom performed on regions as long as is now known to be
necessary). It is an advantage of the similarity transformation
approach that all these details may be easily clarified.

11 Sensitivity analysis
A serious problem with the standard two-equation model

of turbulence, which actually forms the background of enig-
matic features such as the discussed fictitious anomaly, is its
extreme sensitivity to exact values of model constants and
boundary conditions [14].

The sensitivity problem becomes really serious in com-
mon applications of the model to computations using grid

methods, where the problem of boundary conditions often
appears in a disguised form and may lead to conclusions that
the system of solved equations is unstable or unsolvable. On
the other hand, the present similarity approach is particularly
suitable for clarifying this question. After the transformation,
the boundary condition appears in the form of just a single
numerical value to be determined. Using the present solut-
ion, it is tractable and in fact quite instructive to study the
dependence of the solution errors on changes of the bound-
ary condition values. In the sensitivity analysis, the magnitude
of the solution error was judged by the magnitudes of the two
end boundary conditions which are to be fulfilled at the end
of integration: the values of relative velocity u and relative
fluctuation energy 	 outside the jet boundaries – at � = 0.8
(Fig. 15) where they should be zero. The results of repeated
integrations with varied values of boundary conditions at the
starting point (on the jet axis) are shown in Fig. 16.
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Fig. 13: Demonstration of the fact that the improper spreading rate, believed to be an inherent drawback of the two-equation model, is
just a result of using improper boundary conditions on the jet axis: with a change in the value of the conditions, the present solu-
tion may be changed to match the curve from [11]

Fig. 14: Classical sensitivity analysis is concerned with finding the slope of linear (or locally linearised) dependence between the devia-
tions of parameters from the correct value and the resultant error in the solution



They indicate that, in the present problem, there occurs
the worst conceivable situation known by classical sensitivity
analysis: the linearised dependence is here a vertical line with
an infinite slope. This means that the solution of the jet with
the two-equation model exhibits infinite sensitivity even to
the smallest variations of the starting point values. It is only
due to the nonlinearity of the solved system – the fact that the
dependence is not linear and there is some curvature – that
any solution at all is arrived at. Note that some small variation
of the starting value (leading, however, to an error of the
order of tens percent) is admissible only in one sense: only an

increase in "ax or a decrease in jax is tolerable. Even a small
change in the wrong direction causes the whole solution to
collapse.

Of course, simultaneous changes of both values in their
acceptable directions are possible without collapse of the
integration – these are the compensatory variations of [15].
Nevertheless, they lead to wrong predictions: the wrong
”classical” results from Fig. 11 are a consequence of such
compensated deviations from the proper values without
collapse of the solution, as demonstrated in Fig. 13.

12 Conclusions
1) A general solution was derived for the axisymmetric sub-

merged jet flow with a two-equation model of turbulence,
valid for any conditions (but excluding, as usual, the effects
of flow development and intermittence). With the excep-
tion of Pr� – which it is advisable to insert slightly larger
than the standard value – the solution uses standard values
of model constants.

2) The solution is based upon the similarity transforma-
tion approach, whereby the governing partial differential
equations are transformed into a set of seven ordinary
differential Equations (32). Their integration is straight-
forward and presents no stability or stiffness problems.

3) The problem has split boundary conditions: of the seven
required conditions at the starting point, only five are
known. The success then depends critically upon proper
insertion of the two unknown boundary conditions at the
starting point of the integration – the knowledge obtained
in an earlier solution [2] with a simpler, one-equation
model was of substantial help here.

4) The profiles of velocity and other variables computed
from the present solution are in excellent agreement with
available experimental data – a new result, however, is that
especially some parameters of turbulence require a sub-
stantially longer downstream distance from the nozzle to
attain a fully developed condition than was previously con-
sidered necessary.
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Fig. 15: Meaning of the solution error in the sensitivity analysis
of the present solution: deviations of the solution for
some of the basic nondimensional quantities (velocity
and kinetic energy of fluctuations) from their correct zero
value outside the jet

Fig. 16: Results of sensitivity analysis: dependence of the profile end values (outside the jet, Fig. 15) on changes of the boundary
conditions on the jet axis



5) The main advantage of the two-equation model is the
internal closedness of the solution which – in contrast
to earlier solutions such as [3] or [2] – is not dependent
upon a priori assumptions or information from experi-
mental data. Otherwise the resultant profiles of many
variables (such as velocity) are almost coincident with ear-
lier one-equation solution results with , indicating that this
assumption is a rather good approximation.

6) A stain upon the reputation of the two-equation model
has been its alleged inability to predict the proper
spreading rate of axisymmetric jets. The present analysis

shows convincingly that this ”spreading rate anomaly” is a
fiction: there is nothing wrong with the model, the
erroneous results have been merely a consequence of
wrongly inserted numerical values of boundary conditions.

7) The system of equations describing the turbulent axi-
symmetric jet with turbulence modelled by the two-equa-
tion model is extremely sensitive (in fact, the performed
sensitivity analysis shows theoretically infinite sensitivity) to
the values of inserted constants and boundary conditions,
which must be used with at least four (and preferably five-)
digit accuracy to obtain proper results.
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Appendix: Computer program
Listing of the program TES-AXI2E written in BASIC language, which was used for the numerical solution of the seven

ordinary differential equations obtained by the similarity transformation, is included here to make possible verification of the
author’s results and/or evaluation of other variables from the present solution.
10 CLS:SCREEN 9:WINDOW SCREEN (0,0)-(640,320)

20 PRINT “ PROGRAM ,AXIJ-2EQ’”

30 PRINT “ — — — — — — — — — — —

40 PRINT “ This program solves the turbulent, axially”

50 PRINT “ symmetric submerged jet flow in similarity”

60 PRINT “ transformed form, using two-equation model”

70 PRINT “ of turbulence in high Reynolds number version”

80 PRINT “

90 PRINT “ WRITTEN BY: V. TESAR, CVUT PRAHA, 1994”

100 PRINT “ LANGUAGE : BASIC”

110 INPUT “ ”, dummy:CLS

120 DEF FN F1(F,U,EPS,G,N,J,S)=U*ETA

130 DEF FN F2(F,U,EPS,G,N,J,S)=G

140 DEF FN F3(F,U,EPS,G,N,J,S)=N

150 DEF FN F4(F,U,EPS,G,N,J,S)=G*(S/J-2*N/EPS-1/ETA)-J*(F*G/ETA+U*U)/(EPS*EPS)

160 DEF FN F5(F,U,EPS,G,N,J,S)=N*(S/J-2*N/EPS-1/ETA)-G*G-J*(2*U*EPS+N*F/ETA-J)/(EPS*EPS)

170 DEF FN F6(F,U,EPS,G,N,J,S)=S

180 DEF FN F7(F,U,EPS,G,N,J,S)=S*(S/J-2*N/EPS-1/ETA)_

-PRE*J*(S*F/ETA+4*J*U)/(EPS*EPS)_

J*PRE*(CU*G*G-CY*J*J/(EPS*EPS))/EPS

190 FOR VER=0 TO 1 STEP .1

200 LINE (2,300-430*VER)-(600,300-430*VER)

210 NEXT VER

220 FOR HOR=-1 TO 1 STEP .2

230 LINE (200+320*HOR,300)-(200+320*HOR,0)

240 NEXT HOR

250 DETA=.0001

260 ETA=DETA/4

270 PRE=1.38012

280 KAPPA=.41

290 SQC=.3

300 CNU=SQR(SQC):CZ=CNU*CNU*CNU

310 CQS=1/SQC

320 CU=1.44

330 CY=CU+KAPPA*KAPPA*CQS/PRE

340 CKS=9.108401

350 KS=CZ/CKS

360 F=0: PRINT “ f = 0”

370 U=1: PRINT “ u = 1”

380 G=0: PRINT “ g = 0”
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390 N=0: PRINT “ n = 0”

400 S=0: PRINT “ s = 0”

410 EPS=7.609533E-2: PRINT “ eps = ”;EPS

420 J=CKS*EPS^1.5 : PRINT “ j = ”;J

430 FOR I=1 TO 10000

440 A1=DETA*FN F1(F,U,EPS,G,N,J,S)

450 B1=DETA*FN F2(F,U,EPS,G,N,J,S)

460 C1=DETA*FN F3(F,U,EPS,G,N,J,S)

470 D1=DETA*FN F4(F,U,EPS,G,N,J,S)

480 E1=DETA*FN F5(F,U,EPS,G,N,J,S)

490 F1=DETA*FN F6(F,U,EPS,G,N,J,S)

500 G1=DETA*FN F7(F,U,EPS,G,N,J,S)

510 A2=DETA*FN F1(F+A1/2,U+B1/2,EPS+C1/2,G+D1/2,N+E1/2,J+F1/2,S+G1/2)

520 B2=DETA*FN F2(F+A1/2,U+B1/2,EPS+C1/2,G+D1/2,N+E1/2,J+F1/2,S+G1/2)

530 C2=DETA*FN F3(F+A1/2,U+B1/2,EPS+C1/2,G+D1/2,N+E1/2,J+F1/2,S+G1/2)

540 D2=DETA*FN F4(F+A1/2,U+B1/2,EPS+C1/2,G+D1/2,N+E1/2,J+F1/2,S+G1/2)

550 E2=DETA*FN F5(F+A1/2,U+B1/2,EPS+C1/2,G+D1/2,N+E1/2,J+F1/2,S+G1/2)

560 F2=DETA*FN F6(F+A1/2,U+B1/2,EPS+C1/2,G+D1/2,N+E1/2,J+F1/2,S+G1/2)

570 G2=DETA*FN F7(F+A1/2,U+B1/2,EPS+C1/2,G+D1/2,N+E1/2,J+F1/2,S+G1/2)

580 A3=DETA*FN F1(F+A2/2,U+B2/2,EPS+C2/2,G+D2/2,N+E2/2,J+F2/2,S+G2/2)

590 B3=DETA*FN F2(F+A2/2,U+B2/2,EPS+C2/2,G+D2/2,N+E2/2,J+F2/2,S+G2/2)

600 C3=DETA*FN F3(F+A2/2,U+B2/2,EPS+C2/2,G+D2/2,N+E2/2,J+F2/2,S+G2/2)

610 D3=DETA*FN F4(F+A2/2,U+B2/2,EPS+C2/2,G+D2/2,N+E2/2,J+F2/2,S+G2/2)

620 E3=DETA*FN F5(F+A2/2,U+B2/2,EPS+C2/2,G+D2/2,N+E2/2,J+F2/2,S+G2/2)

630 F3=DETA*FN F6(F+A2/2,U+B2/2,EPS+C2/2,G+D2/2,N+E2/2,J+F2/2,S+G2/2)

640 G3=DETA*FN F7(F+A2/2,U+B2/2,EPS+C2/2,G+D2/2,N+E2/2,J+F2/2,S+G2/2)

650 A4=DETA*FN F1(F+A3,U+B3,EPS+C3,G+D3,N+E3,J+F3,S+G3)

660 B4=DETA*FN F2(F+A3,U+B3,EPS+C3,G+D3,N+E3,J+F3,S+G3)

670 C4=DETA*FN F3(F+A3,U+B3,EPS+C3,G+D3,N+E3,J+F3,S+G3)

680 D4=DETA*FN F4(F+A3,U+B3,EPS+C3,G+D3,N+E3,J+F3,S+G3)

690 E4=DETA*FN F5(F+A3,U+B3,EPS+C3,G+G3,N+E3,J+F3,S+G3)

700 F4=DETA*FN F6(F+A3,U+B3,EPS+C3,G+D3,N+E3,J+F3,S+G3)

710 G4=DETA*FN F7(F+A3,U+B3,EPS+C3,G+G3,N+E3,J+F3,S+G3)

720 F=F+(A1+2*(A2+A3)+A4)/6

730 U=U+(B1+2*(B2+B3)+B4)/6

740 EPS=EPS+(C1+2*(C2+C3)+C4)/6

750 G=G+(D1+2*(D2+D3)+D4)/6

760 N=N+(E1+2*(E2+E3)+E4)/6

770 J=J+(F1+2*(F2+F3)+F4)/6

780 S=S+(G1+2*(G2+G3)+G4)/6

790 ETA=ETA+DETA

800 IF ETA>.6 THEN 1000

810 XX=300-430*ETA

820 LAMB=(CZ*EPS^1.5)/(KS*J)

830 UU=200+320*U

840 EE=200+3200*EPS

850 GG=200+32*G

860 NN=200+320*N

870 SS=200+320*S

880 JJ=200+320*J

890 LL=200+320*LAMB

900 CIRCLE (UU,XX),8

910 CIRCLE (GG,XX),4

920 CIRCLE (EE,XX),6

930 CIRCLE (NN,XX),4



The program has only 100 lines – of which a substantial
proportion have only an auxiliary role: for example, lines
10–110 serve only to print the identification heading. Lines
120 to 180 contain the definitions of the seven solved equa-
tions Eq. (32). Lines 190 to 240 are there to draw the grid
used for plotting the resultant profiles. Lines 190 to 260 insert
numerical values of boundary conditions on the jet axis, i.e.,
at � = 0, as well as the value of the parameter CKS = cZ / k�s. In
the present form, the program runs with values of the solution
parameter and fifth boundary condition as evaluated for
Trüpel’s jet. Adjustment to different experimental data is pos-
sible by changes in lines 19 and 200. In line 250, the small
stepsize DETA = �� and in line 260 the starting radial posi-
tion are inserted. The following lines 270 to 420 serve to in-
sert constants and boundary conditions of the solution. The
actual solution begins in line 430. It is performed in a loop
(loop parameter I), which closes at line 990. The integration
method used is the standard Runge-Kutta fourth-order algo-
rithm, written in the repeated seven lines corresponding to
the five similarity variables: F = f, U = u, EPS = 	, G = g,
N = n, J = j and S = z. Line 790 then advances the solutio
along the transverse co-ordinate ETA = �. The solution is
terminated if the value of this similarity transverse co-ordi-
nate becomes larger than � = 0.6 in line 800. The remaining
lines 810 to 980 plot the results in a diagrammatic form.
Among the plotted variables there is also the turbulence pro-
duction rate PROD = and the ratio of turbulence length
scales �.

List of symbols:
cZ [1] turbulence dissipation rate coefficient
c� [1] eddy viscosity coefficient
cU [1] turbulence dissipation rate generation coefficient
cY [1] turbulence dissipation rate destruction coefficient
d [m] nozzle exit diameter
ef [m2/s2] specific energy of turbulent fluctuations
f [1] relative stream function
g [1] relative transverse gradient of velocity
j [1] relative dissipation rate of turbulence
jax [1] relative dissipation rate on jet axis
k [1] coefficient of the integral length growth
[m] turbulence length scale

1EQ [m] one-equation model turbulence length scale

2EQ [m] two-equation model turbulence length scale
m [m2/s] coefficient of the maximum velocity
n [1] relative transverse gradient of fluctuation energy

[m2/s3] turbulence production rate
Pr� [1] Prandtl number of dissipation rate transport

r [1] auxiliary variable
Ret [1] nozzle exit Reynolds number
s [1] jet diameter growth coefficient
s0.5 [ ] diameter growth coefficient related to �0.5

u [1] relative velocity
u0.8 [1] velocity error at the boundary
U [m2/s4] generation of turbulence dissipation rate
wm [m/s] maximum velocity in the profile
wt [m/s] characteristic velocity of turbulent motions
w [m/s] velocity vector
w [m/s] time-mean velocity vector
w1 [m/s] time-mean axial velocity component
w2 [m/s] time-mean transverse (radial) velocity component
X1 [m] axial (streamwise) distance
X2 [m] radial (transverse) distance
Y [m2/s4] destruction rate of turbulence dissipation
z [1] relative transverse gradient of turbulence,

dissipation rate
� [1] exponent of velocity decrease
� [1] exponent of the jet diameter growth
� [1] transverse dimension of shear region
�0.5 [1] conventional jet diameter
	 [1] relative energy of fluctuation
	ax [1] relative fluctuation energy on jet axis
	0.8 [1] energy boundary condition error
� [m2/s3] turbulence dissipation rate
� [1] von Kármán constant
� [1] ratio of turbulence length scales
� [1] similarity transverse co-ordinate
�0.5 [1] value of � at a position where u = 0.5
�� [m2/s] gradient diffusion coefficient of turbulence dissi-

pation rate
� [m2/s] viscosity
�t [m2/s] eddy viscosity
�2 [1] relative transverse distance, 2X2��0.5

� [m2/s] stream function
� [1/m] vector of spatial differentiation operators
1 [1/m] longitudinal gradient operator
2 [1/m] transverse gradient operator
 [1] operator of differentiation with respect to �

[ �t] [1/s] Prandtl transport operator

The nomenclature as well as the form of the equations
closely follows the usage in textbook [1].
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940 CIRCLE (JJ,XX),2

950 CIRCLE (LL,XX),3

960 PROD=G*G*EPS*EPS/J

970 PP=200+1600*PROD

980 CIRCLE (PP,XX),1

990 NEXT I

1000 INPUT “ ”,DUMMY:END
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