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Abstract. The mass and spin estimates of the 4U 1636–53 neutron star obtained by the Resonant
Switch (RS) model of high-frequency quasi-periodic oscillations (HF QPOs) are tested by a large variety
of equations of state (EoS) governing the structure of neutron stars. Neutron star models are constructed
under the Hartle–Thorne theory of slowly rotating neutron stars calculated using the observationally
given rotational frequency frot = 580 Hz (or alternatively frot = 290 Hz) of the neutron star at 4U 1636–
53. It is demonstrated that only two variants of the RS model are compatible with the parameters
obtained by modelling neutron stars for the rotational frequency frot = 580 Hz. The variant giving
the best fit with parameters M ∼ 2.20 M� and a ∼ 0.27 agrees with high precision with the prediction
of one of the Skyrme EoS [1]. The variant giving the second best fit with parameters M ∼ 2.12 M�
and a ∼ 0.20 agrees with lower precision with the prediction of the Gandolfi EoS [2].
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1. Introduction
A new alternative to the standard models of HF QPOs
has been proposed recently in [3, 4]. The Resonant
Switch (RS) model of twin-peak HF QPOs observed
in low-mass X-ray binaries (LMXBs) containing a neu-
tron star is based on the switch of twin oscillations
at a resonant point, where one pair of oscillating
modes changes to some other pair due to non-linear
resonant phenomena. The RS model has been ap-
plied to the atoll source 4U 1636–53, where we as-
sume two resonant points observed at frequency ratios
νU : νL = 3:2 and 5 : 4 [3]. The range of allowed values
of dimensionless spin a and mass M of the neutron
star was determined by fitting the pairs of oscillatory
modes admitted by the RS model to the observed
data in the regions related to the resonant points [15].
Among acceptable variants of the RS model the most
promising are those combining relativistic precession
and total precession frequency relations or modifica-
tions to them, when the precision of the fits increases
strongly (the χ2 test is improved by almost one or-
der) in comparison to the fits realized by individual
frequency pairs along the whole data range [15]. Here
we present preliminary results of testing the RS model
by various models of EoS.

2. Resonant switch model
The RS model [3, 4] is based on the idea that the twin
oscillatory modes creating the sequences of lower and
upper HF QPOs can switch at a resonant point where

the frequencies of the upper and lower oscillations νU
and νL become commensurable. It is expected that at
the resonant point non-linear resonant phenomena will
excite a new oscillatory mode (or two new oscillatory
modes) and dump one of the previously acting modes
(or both the previously acting modes), i.e., switching
from one pair of oscillatory modes (corresponding to
a specific model of HF QPOs) to the other pair, which
will act up to the next relevant resonant point.

In the simplest version of the RS model, we as-
sume two resonant points at disc radii rout and rin,
with observed frequencies νout

U , νout
L and νin

U , νin
L , be-

ing in commensurable ratios pout = nout : mout and
pin = nin : min. Observations put restrictions on
νin

U > νout
U and pin < pout. In the region covering

the resonant point at rout we assume twin oscilla-
tory modes with the upper (lower) frequency deter-
mined by the function νout

U (r,M, a) (νout
L (r,M, a)).

Near the inner resonant point at rin different oscil-
latory modes generally occur with the upper and
lower frequency relation functions νin

U (r,M, a) and
νin

L (r,M, a). We assume all the frequency functions to
be given by combinations of the orbital and epicyclic
frequencies of the geodesic motion in the Kerr back-
grounds. Such a simplification is correct with high
precision for near-maximum-mass neutron (quark)
stars in a slow rotation regime related to all known
atoll sources [5, 6].
In the Kerr spacetime, the epicyclic frequencies

νθ and νr and the Keplerian (orbital) frequency νK
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Model Relations

RP νL = νK − νr νU = νK
RP1 νL = νK − νr νU = νθ

TP νL = νθ − νr νU = νθ
TP1 νL = νθ − νr νU = νK

TD νL = νK νU = νK + νr

WD νL = 2 (νK − νr) νU = 2νK − νr

Table 1. Frequency relations corresponding to indi-
vidual QPO models.

depend only on the spacetime parameter M (mass)
and a (spin) [7–10].
The frequency-relation functions have to meet

the observationally given resonant frequencies that
can be determined by the “energy switch effect” [3, 11].
In the framework of the simple RS model this require-
ment enables direct determination of the Kerr back-
ground parameters describing the exterior of the neu-
tron (quark) star [3, 4]. Independence of the frequency
ratio on the mass parameter M implies that the con-
ditions

νout
U (x; a) : νout

L (x; a) = pout , (1)
νin

U (x; a) : νin
L (x; a) = pin (2)

determine the relations for spin a in terms of the di-
mensionless radius x = r/(GM/c2) and the resonant
frequency ratio p. They can be expressed in the form
aout
p (x) and ain

p (x), or in an inverse form xout
p (a) and

xin
p (a). At the resonant radii, the conditions

νout
U = νout

U (x;M,a) , νin
U = νin

U (x;M,a) (3)

are satisfied along the functions Mout
pout

(a) and M in
pin

(a)
which can be obtained by using the functions xout

p (a)
and xin

p (a). The parameters of the neutron (quark)
star are then given by the condition [3, 4]

Mout
pout

(a) = M in
pin

(a). (4)

Condition (4) determinesM and a with precision given
by the error in determining the resonant frequencies
by the energy switch effect.
We consider the pairs of frequency relations given

by the relativistic precession (RP) model [9], the total
precession (TP) model [12], and their modifications
RP1 and TP1, combined also with the tidal disrup-
tion (TD) model [13], and the warped disc oscillations
(WD) model [14]. The frequency relations are sum-
marized in Table 1. For each of the frequency rela-
tions under consideration, the frequency resonance
functions and the resonance conditions determining
the resonant radii xn:m(a) are given in [3].

Combination of models χ2
min a M [M�]

RP1(3:2) – RP(5:4) 55 0.27 2.20
TP(3:2) – RP(5:4) 55 0.52 2.87

RP1(3:2) – TP1(5:4) 61 0.20 2.12
RP1(3:2) – TP(5:4) 62 0.45 2.46
TP(3:2) – TP1(5:4) 68 0.31 2.39
RP(3:2) – TP1(5:4) 72 0.46 2.81
WD(3:2) – TD(5:4) 113 0.34 2.84

Table 2. The best fits and the corresponding spin
and mass parameters of the neutron star located in
the 4U 1636–53 source.

3. Application to the atoll
source 4U 1636–53

In [3], the RS model has been applied in the case of
the atoll source 4U 1636–53, where the observational
data clearly demonstrate the possible existence of two
resonant points with frequency ratios 3 : 2 and 5 : 4,
where the energy switch effect occurs. The mass M
and spin a ranges of the 4U 1636–53 neutron star
predicted by the RS model with resonant frequencies
given by the energy switch effect are very large (see
Table 1 in [3]). However, the ranges can be strongly
restricted by fitting the observational data near the res-
onant points by the pairs of frequency relations corre-
sponding to the twin oscillatory modes. In the fitting
procedure we apply those switched twin frequency re-
lations predicted by the RS model that are acceptable
due to the neutron (quark) star structure theory [3].
In fitting the observational data we use the standard
least-squares (χ2) method. The resulting limits on
the mass M and spin a of the 4U 1636–53 neutron
star implied by the data fitting procedure realized
in the framework of the RS model of HF QPOs are
presented in Table 2. The fitting procedure is shown
to be by almost one order of magnitude more pre-
cise than the fitting realized by individual pairs along
the whole range of the observational data [15]. The
best fit obtained for the RS model with the frequency
relation pair RP1–RP gives χ2 ∼ 55 and χ2/dof ∼ 2.5
[15]. The results of the fitting procedure for the best
fit are presented in Figure 1.

The best fit occurs for a combination of the RP1 and
RP models, where the RP1 model has to be related
to the outer resonant point, while the RP model is re-
lated to the inner resonant point and predicts neutron
star parameters M ∼ 2.20 M� and a ∼ 0.27 which
are quite acceptable according to the neutron star
theory and can be considered as the best prediction
of the RS model. The second best fit (with χ2 = 61)
is obtained for the frequency pair RP1–TP1, where
the RP1 model has to be related to the outer resonant
point, while the TP1 model is related to the inner reso-
nant point and predicts the parameters M ∼ 2.12 M�
and a ∼ 0.20, which are again acceptable according
to the neutron star structure theory.
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Figure 1. Results of the fitting the data of twin-peak HF QPOs in the atoll source 4U 1636–53 by the procedure of
the RS model for the combination of the RP1(3:2) and RP(5:4) frequency relations. Left panel: Profile of the lowest
χ2 for a given M . Thick blue vertical lines give mean value of M as determined by the RS model from the frequency
ratio governed by the energy switch effect. The grey region corresponds to the precision of the fit. Right panel: The
pair of frequency relations RP1–RP obtained for the best fit to the observational data (with χ2 ∼ 55).

4. Equations of state for
the neutron star in source
4U 1636–53 testing
the RS model

We compare results obtained in [15] with models of
rotating neutron stars calculated using the Hartle–
Thorne approximation [16, 17], which describes slowly
rotating neutron stars. We construct models of rotat-
ing neutron stars using a large variety of acceptable
EoS and with rotation frequency 580 Hz (or 290 Hz)
observed for source 4U 1636–53 [18]. In Figure 2,
the results of the Hartle–Thorne model are illustrated
by appropriately denoted curves in the M–a plane
that are calculated for the EoS under consideration.

We can see that no EoS enables a model of the neu-
tron star that can fit the RS model data, if we as-
sume the rotational frequency of the 4U 1636–53 neu-
tron star frot ∼ 290 Hz. For the rotational frequency
frot ∼ 580 Hz, neutron star models give very interest-
ing restrictions that are in significant agreement with
the results of applying the fitting the HF QPO data
in the framework of the RS model. A neutron star
model using one of the Skyrme EoS (SV) [1] meets
with high precision the prediction of the RP1–RP
version of the RS model that gives the best fit to
the twin peak HF QPO data observed in the 4U 1636–
53 source for neutron star parameters M ∼ 2.20 M�
and a ∼ 0.27. The neutron star model based on
the Gandolfi EoS [2] meets with acceptable precision
the prediction of the RP1–TP1 version of the RS
model that gives the second best fit to the observation
data of the HF QPOs in 4U 1636–53 for a neutron
star having parameters M ∼ 2.12 M� and a ∼ 0.20.
Note that the second best RS model fit is marginally
touched by another parameterized Skyrme EoS (Gs)
[1] for the neutron star parameters M ∼ 2.12 M� and
a ∼ 0.20. This result demonstrates that the 4U 1636–
53 neutron star could be in a state very close to
instability with respect to the radial perturbation,

corresponding to the maximum mass, predicted by
the EoS.

All the other predictions of the RS model are located
in M–a plane positions that are evidently outside
the range of all the EoS considered in the present
paper – we can expect that this is true even for all
variants of the presently known EoS.

5. Conclusions
We can conclude that the EoS considered in our study
strongly restrict the versions of the RS model. Only
two of them (RP1–RP and RP1–TP1) are therefore
acceptable. However, it is quite interesting that the RS
model can put strong restrictions on the acceptable
EoS, and it seems that only three of those considered
here can be taken as plausible.
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Figure 2. Hartle–Thorne models of neutron stars with a variety of EoS: 1−9: Skyrme [1], 10: UBS [19], 14: APR [20],
16: BBB2 [21], 17: BPAL12 [22], 18: BALBN1H1 [23], 19: GLENDNH3 [24], 35: APR2 [20], 79: Gandolfi [2]. The
models are constructed for frot ∼ 290 Hz (left panel), and frot ∼ 580 Hz (right panel).
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