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Abstract. Unsteady flow of thixotropic liquid in pipes is solved by 1D and 2D numerical methods using
the same constitutive equation — the only difference is in the radial diffusion of the structural parameter.
Comparison shows that the neglected diffusion of structural parameter implicates a much stronger effect
of thixotropy. The models are applied for analysis of the observed hysteresis of hydraulic characteristic of
collagen.
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1. Introduction
Thixotropy is a property of fluids having viscous char-
acteristics that depend on their deformation history,
see review articles by Mewis [1] and Barnes [2]. Ap-
proximate solutions of steady flow of thixotropic liquids
in a pipe based upon a constant power-law radial ve-
locity profiles were presented by Sestak and Zitny [3]
and by Kemblowski and Petera [4]. A steady flow and
variable radial velocity profile were considered in the
FEM solution, Sestak et al. [5], using Houska’s consti-
tutive model [6] that takes into account yield stresses.
Solutions describing unsteady flows of thixotropic fluids
are not so frequent, and are concerned mostly with
the specific problem of restarting waxy crude oil in
pipelines, starting from the crude approximation by
Zitny [7] or simulations presented by de Oliveira et
al. [8] up to the most complex CFD methods published
in a series of papers by Wachs et al. [9] and Negrao
et al. [10]. These CFD solutions of compressible fluids
described by Houska’s model of thixotropy are based
upon techniques developed by Vinay et al. [11, 12],
for compressible Bingham fluids. The methods can be
characterized as follows: 2D orthogonal staggered grid,
augmented Lagrangian multiplier method for pressures
and Uzawa algorithm applied to the resulting saddle
point problem. All the previous models assume purely
convective transport of structural parameter λ. The
exception is a generalization of the Moore’s model of
thixotropy with a molecular diffusion term suggested
by Billingham and Fergusson [13]. The 1D and 2D
models presented in this paper introduce a generaliza-
tion of Houska’s model by adding a diffusion term into
the transport equation for λ. The 1D model assumes
infinite radial diffusion and uniform radial profile of
λ, while the 2D model assumes zero diffusion and a
strong radial variation of λ. The aim of the following
analysis is to compare predictions of pressure drops

corresponding to the 1D and 2D extremes.

2. Motivation
The problem of unsteady flow of thixotropic liquid
in a pipe was initiated by the industry and by the
demand for an on-line recording of rheological prop-
erties of collagenous material used for the extrusion
of collagen casings. The time independent Herschel
Bulkley rheological model was capable of describing
rheograms of collagenous material for a wide range of
deformation rates; however it was not able to describe
a slight observed hysteresis of hydraulic characteristic
(pressure drop versus flowrate) at transient flows. The
thixotropic properties of collagen were identified as a
possible reason. The suggested thixotropic models can
be used not only for modeling of the hysteresis, but also
for simulation of production lines (collagenous materials
used for extrusion of vascular grafts in biomedicine (Ku-
mar [14]), or as sausage casings in food industry, Deiber
et al. [15]). Nevertheless, information on rheological
properties of collagen is restricted due to problems
with the application of rotational rheometers. Usually
only rheograms measured by capillary rheometers are
available, giving no information about thixotropy. The
only exception is a paper by Deiber et al. [15], reporting
thixotropy of collagen suspensions at low concentration
(0.5–3.7%), using a rotational rheometer and a cone
and plate configuration.

3. Methods
This paper is devoted to numerical modelling of un-
steady flow of thixotropic liquids in circular pipes. As
a possible application of the suggested methods the
analysis of hysteresis of the hydraulic characteristics
observed at a production line of collagen casings will
be presented.
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Figure 1. Setup of experimental pipeline.

3.1. Experimental setup and procedure
The experiments were realized at the production ex-
trusion line DEVRO Jilemnice shown schematically in
Fig. 1. The processed material (collagenous matter:
approximately 7% mass fraction of bovine collagen and
water) is delivered from a storage tank by an AQM
57-20/S003 positive displacement pump, through a rel-
atively long pipe (L = 4.287m, R = 0.0106m) to an
extruder. The flow rate is controlled by varying the
pumping speed and the pressure drops (changes) are
recorded by DMP 331P (BD Sensors) pressure trans-
ducers. Special experiments characterized by a gradual
increase and decrease of mass flow rate at constant
temperature and constant composition of tested matter
were carried out during a break of production in the
extrusion processing line with the goal of identifying
parameters for the Herschel-Bulkley rheological model.
Most details concerning the technical realization and
the composition of the processed collagenous mate-
rial are confidential, and only limited data files (time;
flow rate; pressure drop) were released. Nevertheless
these experiments serve as illustration and as a test
of the possibilities of the suggested methods in real
applications.

The processed material, at relatively high concentra-
tions of bovine collagen (7%), is a viscoelastic paste
that looks like “silly putty”. Our preliminary experi-
ments in the laboratory confirmed linear viscoelasticity
at small deformations (measured by the cone and plate
oscillating rheometer Haake giving a module of G′
of 5 kPa, G′′ of 2 kPa). Experiments with rotational
rheometers at constant deformation rates failed due
to very high consistency. Therefore, no independent
evaluation of thixotropic time constants was realized.
Laboratory tests of several collagen samples, carried
out by using size exclusion chromatography and UV
detection, identified the existence of very long collagen
fibres (19% of the longest fraction 780 kDa).

3.2. Constitutive equation
The Houska’s thixotropic model [6] is a generalization
of the routinely used Herschel Bulkley constitutive
equation, simplified for the special case of simple shear
flow to the scalar equation for shear stress τ :

τ = τy + ∆τyλ+ (K + ∆Kλ)γ̇n; γ̇ = ∂u

∂r
. (1)

The structural parameter λ=1 describes a fully re-
covered internal structure, while λ=0 corresponds to
a completely destroyed structure. Time changes for
structural parameter λ are described by the transport
equation:

Dλ

Dt
= Dλ∇2λ+ a(1− λ)− bλγ̇m. (2)

The diffusion term on the right side is usually neglected
and only the terms for regeneration (a) and structure
destruction (b) are considered.

3.3. Radially independent structural
parameter (1D model)

The assumption that the structural parameter λ de-
pends only on the axial coordinate and on time λ(t, x)
would represent a great simplification. This case is prob-
ably more relevant for polymeric chains with clusters
of a size comparable with the pipe radius (the tested
collagen is characterized by extremely long chains with
molecular mass 780 kDa).

3.3.1. Flow of a Herschel-Bulkley fluid
in a pipe

If λ is independent from the radial coordinate, then the
effective consistency K? and the yield stress τ?y depend
only upon time and the axial coordinate:

K? = K + λ∆K; τ?y = τy + λ∆τy. (3)
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Figure 2. Time course of flow rate for tested cases.

Therefore, it is possible to use the RMW (Rabinowitsch,
Mooney, Weissenberg) equation for volumetric flow rate
expressed as a function of wall shear stress (or gradient
of pressure):

V̇

πR3 =
( τw
K?

)1
n

(
n

3n+ 1

(
1−

τ?y
τw

)3n+1
n

+ 2n
2n+ 1

τ?y
τw

(
1−

τ?y
τw

)2n+1
n

+ n

n+ 1

( τ?y
τw

)2(
1−

τ?y
τw

)n+1
n

)
. (4)

Because we need to calculate the wall shear stress for
a given flow rate, it is necessary to iterate the inverse
relationship:

τw = τ?y +K?
( V̇

κ(τw)πR3

)n
, (5)

κ(τw) = n

3n+ 1

(
1− 1

2n+ 1
τ?y
τw

− 2n
(2n+ 1)(n+ 1)

(( τ?y
τw

)2
+ n

( τ?y
τw

)3))
. (6)

After just a few iterations, the process converges for
arbitrary model parameters. Equations (3)–(6) were
presented recently by Zitny et al. [16] in a simplified
1D model.

3.3.2. Flow of a Herschel-Bulkley fluid
in a pipe

The transport equation (2) can be integrated across the
cross section of the pipe and the last term describing
the averaged decomposition of the structure can be
expressed in an analytical form, because the radial
velocity profile is known (the mentioned model in Zitny
et al.[16] assumed a constant shear rate corresponding

to Newtonian velocity profile):

γ̇m = 2
R2

∫ R

ry

r
(τw r

R − τ
?
y

K?

)m
n

dr =

=
2n(τw − τ?y ) m

n +1

τ2
wK

?m
n

(m+ n)τw + nτ?y
(m+ 2n)(m+ n) . (7)

For Dλ = 0, Equation (2) reduces to a hyperbolic
equation that can be integrated analytically along its
characteristic dx = u dt giving:

λ(t) = a− (a− (a+ bγ̇m)λ0)e−(a+bγ̇m)(t−t0)

a+ bγ̇m
, (8)

where λ(t) is the value of the structural parameter
of a fluid particle having a value of λ0 at time t0,
assuming that the particle is under the influence of a
constant shear rate (constant flow rate) within the time
interval (t0, t). In cases with variable flow rates, it is
necessary to apply (8) using shorter time steps during
the integration.

The 1D numerical solution by method of charac-
teristics calculates nodal values of structural param-
eters at a new time t(k+1) from the values of the
structural parameter λ(k)

1 , λ
(k)
2 , . . . at equidistant nodes

(x1 = 0, x2 = ∆x, x3 = 2∆x, . . .) and previous time
t(k). The time step ∆t(k) = t(k+1) − t(k) is not a con-
stant and is determined by the volumetric flow rate so
that the fluid particle moves a distance of ∆x:

∆t(k) = t(k+1) − t(k) = ∆x
u(k) = ∆xπR2

V̇ (k)
(9)

(Courant Friedrichs Lewy criterion CFL u∆t/∆x = 1).
The new value of λ(k+1)

i is calculated by integration
of a fluid particle along the characteristic from the
old value λ(k)

i−1 using (8). After the new values for
structural parameters are updated, wall shear stress,
pressure gradient and overall pressure profile can be
calculated from (6).
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Figure 3. Integral 1D model and 2D model calculated for time course of flow rate shown in Fig. 2. Herschel-Bulkley
model τy = 100Pa, ∆τy = 100Pa, K = 200Pa sn, ∆K = 250Pa sn, n = 0.38. Transport equation a = 0.001 s−1,
b = 0.002 sm−1, m = 0.9.

3.4. 2D model of velocities and
structural parameter profiles
(finite differences)

Results that are probably more realistic can be obtained
by taking into account non-uniform structural parame-
ter profiles. Values of axial uij and radial vij velocities
and structural parameter λij are calculated at grid
points xi, rj of orthogonal nonuniform collocated mesh
using the finite differences method. Radial profiles of
axial velocities are evaluated from axial momentum
balance (assuming linear radial shear stress profile and
a constant value of structural parameter in the an-
nular sections rj , rj+1 for j = 1, 2, . . . nR−1). Radial
velocities follow from the continuity equation and the
profiles of structural parameters are calculated from
discretized transport equation (2) assuming purely con-
vective transport (therefore Dλ = 0). More details of
this numerical solution are presented in the Appendix.

4. Results and discussion
The numerical methods described in Section 3 were
implemented in several Matlab programs and tested
with the goal of evaluating the differences between
the predictions made using the 1D and 2D model.
Operational parameters were selected according to the
geometry of the test setup (pipe L = 4.2m, R = 0.01m).
The flow rate was progressively increased from 5×10−7

to 2× 10−5 m3 s−1 and then progressively decreased as
shown in Fig. 2.

A comparison of the predicted hydraulic characteris-
tic using the 1D and 2D model for selected rheological
parameters is shown in Fig. 3. The 1D model, with a
constant radial profile of structural parameter, predicts
pressure drops approximately 10 to 20% higher than
the 2D model with a varying radial profile of structure.

As expected, the 2D model predicts a more intensive
breakup of the thixotropic structure; particularly in
the vicinity of the wall (the uniform distribution of the
structure decay obviously underestimates the signifi-
cant effect of the wall layer in the 1D model). The
simulations were carried out for different meshes (spa-
tial discretization using 21, 51, 101, and 451 nodes
in the axial direction, and 11, 21, and 31 nodes in
radial direction when testing the 2D method). The
times steps were fully determined by spatial steps in
the method of characteristics (1D), while in the 2D
method, time steps were not restricted. Nevertheless,
in the simulations the time steps were selected to be
identical with the 1D method. Tests confirmed that
both the 1D and 2D method were stable and consistent
in all tested cases.
Fig. 4 presents the numerical prediction of the 2D

model and the data obtained experimentally with the
collagen material used in the experimental setup de-
scribed in paragraph 3.1. The volumetric flow rate was
gradually increased from 7× 10−7 m3 s−1 to 5.1× 10−5

m3 s−1. The rate of volumetric change was much slower
than in previous tests (more than 20 minutes up and
20 minutes down). Such a slow variation of flow rate
increases the number of time steps (4100 time steps
for 151 grid points in the axial direction) and increases
the run-time necessary for preliminary identification
of thixotropic model parameters. The parameters (a,
b, n, m, K, ∆K, τy, ∆τy) were identified (approx-
imately) by linear search using the least square cri-
terion (the sum of the squares of the deviations be-
tween measured and predicted pressures during up
and down phases). It is obvious that the models of
thixotropy (regardless of whether it was the 1D or
2D model) were not able to describe the hysteresis
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Figure 4. Hydraulic characteristic of collagen (2D model). Upward pointing triangles represent increasing flow rate;
while diamonds represent decreasing flowrate. Continuous line integral model for K = 150Pa sn, ∆K=350Pa sn,
τy = 1350Pa, ∆τy = 250Pa, n = 0.35, a = 0.002 s−1, b = 0.004 sm−1, m = 1, R = 0.01m, L = 4.2m, time up: 1200 s.

at high flow rates, a trend that was also observed in
previous simulations (Fig. 3). The fact that the hy-
draulic hysteresis of thixotropic liquid is significant
only at low flow rates is closely related to the resi-
dence time tRTD = L/ū of fluid particles. The relative
change of structural parameter (and hysteresis) can be
quantified as

∆λ
λ

= 1
λ

∂λ

∂V̇

V̇max − V̇min
∆tup

tRTD. (10)

For the analyzed case (and for the model parameters
shown in Fig. 4) the ∆λ/λ ratio ≈ 100 at the minimum
flow rate, and only ≈ 0.01 at the maximum flow rate.

5. Conclusions
The 1D method of characteristic and the 2D finite
differences method were designed to simulate transient
flow of thixotropic incompressible liquids in pipes us-
ing Houska’s model with variable yield stress. The
1D model assumes that the radial diffusion mitigates
non-uniformities and large gradients of structural pa-
rameter at the wall. The 2D model assumes only
convective transport of structure and predicts large
changes of structure at the wall where local residence
times go up to infinity. The two suggested meth-
ods represent, in fact, the lower and upper bound
of the pressure drop (the 1D method underpredicts and
the 2D method overpredicts the effect of thixotropic
structure decay). The developed models were used
to evaluate rheological properties of bovine collage-
nous matter. We observed a phenomenon resembling
hydraulic hysteresis in a production line facility and
this paper is an attempt to explain this behaviour

by thixotropy. However, the hysteresis can only be
explained by thixotropy at low flow rates and the hys-
teresis observed at high flow rates would need a different
explanation.

6. Appendix
Axial velocities uij , radial velocities vij and structural
parameter λij are calculated in each time step in nodes
of 2D rectangular mesh (i=index in the axial, j in the
radial direction). The radial profiles of axial velocities
are evaluated from the axial momentum balance (as-
suming a linear radial shear stress profile and a constant
value of structural parameter in the annular sections
rj , rj+1 for j = 1, 2, . . . nR−1),

τw(t, xi)
r

R
= τy + ∆τy

λij + λij+1

2︸ ︷︷ ︸
τ?

y

+
(
K + ∆Kλij + λij+1

2

)
︸ ︷︷ ︸

K?

(
−∂u
∂r

)n
, (11)

giving

u(t, xi, rj) = u(t, xi, rj+1)

+ Rn

τwK? 1
n (n+ 1)

((
τw
rj+1

R
− τ?y

)n+1
n

−
(
τw
rj
R
− τ?y

)n+1
n

)
. (12)

The nodal velocities were evaluated recursively
from (12) starting from zero velocity at the wall. The
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Figure 5. 2D mesh and interpolation of structural parameter at a “previous” time step.

corresponding flow rates in annular sections between
the wall and radius rj are

V̇ (t, xi, rj) = V̇ (t, xi, rj+1) + π

(
(r2u)j+1

j

+ R3

τ3
wK

? 1
n

τw
rj+1

R∫
τw

rj
R

τ2 (τ − τ?y ) 1
n dτ

)
. (13)

The velocities and flow rates in (12), (13) are expressed
as analytical functions of wall shear stress τw and
the wall shear stress is determined by the prescribed
flowrate. This constraint is in fact the algebraic equa-
tion V̇ (t) = V̇ (t, xi, rj) , which has to be solved iter-
atively at each time step and at all cross sections xi.
The radial velocity can be calculated from the mass
balance expressed in terms of the radial profiles of flow
rates

v(t, xi, rj) = V̇ (t, xi+1, rj)− V̇ (t, xi, rj)
2πrj(xi+1 − xi)

. (14)

Let us assume that the nodal values of structural param-
eter λ(k)

ij are known at time t(k) and the values λ(k+1)
ij

at time t(k+1) and node xi, rj we want to calculate.
It is first necessary to calculate the trajectory of

the particles, or more precisely, to calculate the initial
position of the fluid particles (coordinates ξ, η shown
in Fig. 4) that ends at node xi, rj . Assuming that the
change in the next time step ∆t(k) = t(k+1) − t(k) is
small, the trajectory remains inside the cell formed by
cross sections xi−1 and xi, and the increments ξ, η
are given by velocities evaluated at node i, j from (12)
and (14):

ξ = u
(k)
ij

∆t(k)

∆x ; η = v
(k)
ij

∆t(k)

rj − rj−1
. (15)

The value of the structural parameters of a fluid par-
ticle at a “previous” time t(k) at position ξ, η can
be interpolated from the nodal values (using bilinear

interpolation):

λ(k)(ξ, η) = λ
(k)
ij (1− ξ)(1− η)

+ λ
(k)
i−1,jξ(1− η) + λ

(k)
i,j−1(1− ξ)η

+ λ
(k)
i−1,j−1ξη for ξ > 0, η > 0; (16)

λ(k)(ξ, η) = λ
(k)
ij (1− ξ)(1 + η)

+ λ
(k)
i−1,jξ(1 + η)− λ(k)

i,j+1(1− ξ)η

− λ(k)
i−1,j+1ξη for ξ > 0, η < 0. (17)

The values of the structural parameters at a “new”
time are obtained by integration of transport equa-
tion (2) along the particle trajectory (i.e., along the
characteristic):

λ
(k+1)
ij = 1

a+ b(γ̇(k)
ij )m

(
a−

(
a− (a+ b(γ̇(k)

ij )m)

· λ(k)(ξ, η)
)
e−(a+b(γ̇(k)

ij
)m)∆t(k)

)
. (18)

This relationship can be applied to all internal points;
the value of structural parameters at the wall can be
calculated directly from equilibrium

λ
(k+1)
wi

∼=
a

a+ bγ̇mi
. (19)

The method described is explicit because the veloc-
ities in (15), the associated trajectories and rate of
deformation are evaluated at the “previous” time.
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List of symbols
a Coefficient of structure regeneration [s−1]
b Coefficient of structure breakdown [sm−1]
Dλ Diffusion coefficient [m2 s−1]
K Consistency coefficient [Pa sn]
∆K Increment of consistency coefficient [Pa sn]
L Length of pipe [m]
m Breakdown index [–]
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n Flow behaviour index [–]
p Pressure [Pa]
r Radial coordinate [m]
R Radius of outer pipe [m]
t Time [s]
tRTD Mean residence time [s]
u Axial velocity [m s−1]
ū Mean axial velocity [m s−1]
v Radial velocity [m s−1]
V̇ Volumetric flow rate [m3 s−1]
x Axial coordinate [m]

γ̇ Shear rate [s−1]
λ Structural parameter [–]
τw Wall shear stress [Pa]
τy Yield stress [Pa]
∆τy Increment of yield stress [Pa]

i Index of cross-section (axial coordinate)
j Index of node in radial direction
w Subscript referring to the wall
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