
1 Introduction
During the last three decades progress has been made

in the field of observational astronomy. First, sophisticated
low light level detectors were invented, developed and used
for direct imaging. Among these detectors, Charge Coupled
Device (CCD) chips have become the dominant detector for
various applications. This is because they possess high detec-
tive quantum efficiency, a linear response and a very wide
dynamic range. Secondly, fast electronic (mainframe,
personal and workstation) computing machines with huge
memories have greatly supported astronomy not only in
automating the observational techniques but also in data
acquisition, reduction and analyses.

In the field of stellar astronomy, CCD detectors and elec-
tronic computers have played a vital role since numerous
frames have been taken and analysed by various packages to
identify stellar images and extract their astronomical parame-
ters. This has been achieved through modelling a stellar
image either empirically [1, 2, 3] or mathematically [4, 5, 6]
or semi-empirically [7, 8]. All these approaches require user
intervention to set initial values for the parameters of the
adopted model as well as the form of the model itself. More-
over several non-linear function-fitting processes have to be
performed for many parameters, which requires much com-
puting time. In addition, in many cases false results have been
obtained, identifying images as stellar where they are not, and
vice versa.

This paper deals with the development of an Artificial
Neural Network approach for stellar image recognition. It is
structured as follows. Section 1 introduces the project. Section
2 states the problem and the objective. Section 3 describes the
developed system, specifying all relevant concepts and the
implementation details. In Section 4, a case study is selected
and used to verify the applicability of the system. The results
of this approach are reported and discussed, taking into
account standard published approaches, and are compared
with the results derived by one of the best known and more
widely applied methods in astronomy. Some concluding
remarks are presented in Section 5.

2 Statement of problem and objective
CCD detectors are capable of imaging a huge number of

celestial objects (stars, galaxies, etc) on a single frame under
the same conditions. In such frame, each given picture ele-
ment (pixel) contains the data number representing linearly
the detected photons coming from one or more of several
sources: 1) seen object, 2) unseen object, 3) localised image
defects, 4) cosmic ray events, and 5) diffuse sources, including
but not necessarily limited, for example, to the terrestrial
night sky and scattered light in the camera. Hence, an ob-
tained frame may contain many objects, some of which are
actually due to stars, while the others are not, though their
data-distributions may be similar to data distributions of stel-
lar origin. This may be due to some of the sources stated
above.

The main objective of the present work is to develop
a simple, fast and reliable stellar image identification method
that should be effectively able to identify stellar images and to
differentiate between them and other objects on CCD frames.
The approach deemed here is based on Artificial Neural
Network concepts.

3 The present method
An Artificial Neural Network (ANN) can be defined as

a category of mathematical algorithms that produces
solutions for various specific problems. ANNs, have been
biologically inspired to emulate the neural networks found in
living organisms. An extremely important feature of an ANN
is its learning capability, which is very useful and powerful
in a wide range of applications. Supervised learning can
be advantageously used, since it is a straightforward task
to prepare the necessary input/output patterns for network
training. This justifies the selection of multi-layer feed-for-
ward networks for the required classification task. The error
back-propagation learning algorithm will be used in the pres-
ent work to train the network.

In the present work we aim at investigating the possibility
of establishing a Stellar Image Interpretation System using
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Artificial Neural Networks (SIIS-ANN) as a classifying tech-
nique that decides whether a given pixel array in a CCD
frame represents a star image or some other objects. This
decision is based on the distribution pattern of the electron
contents of the given pixel and its neighbouring pixels.

3.1 SIIS-ANN structure
The present SIIS-ANN consists of a two-layer feed-for-

ward network, as shown in Fig. 1. The first (hidden) layer has
4 neurones, while the second (output) layer has 3 neurones.
The total inputs (zi) to the network amount to 24. The dimen-
sion of the hidden layer weight matrix is v(4 × 24), while that
of the output layer weight matrix is w(3 × 4). Note that v1,0,
v2,0, v3,0, and v4,0 are the biases of the neurones of the hidden
layer, while w1,0, w2,0, and w3,0 are the biases of the output
layer neurones. A differentiating function has to be adopted
for learning and discriminating purposes, on which the
weights v and w



3.2.1 Star input pattern:
Figures 3 and 4 represent the input patterns for a bright

star and a faint star, respectively.

3.2.2 Cosmic ray event input pattern:
Figures 5, 6 and 7 show examples of some of the input

patterns for high, intermediate and low energy cosmic ray
events, respectively.
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Fig. 2: Diagram illustrating the input pattern values

244 505 827 672 219

669 1974 3171 1737 406

1593 4499 6839 2950 520

2091 3825 5474 2256 459

1369 1569 1894 941 247

a) 5 × 5 window pixel (Original values)

0.035678 0.073841 0.120924 0.098260 0.032022

0.097821 0.288639 0.463664 0.253985 0.059365

0.232929 0.657845 1 0.431350 0.076035

0.305746 0.559292 0.800409 0.329873 0.067115

0.200175 0.229419 0.276941 0.137593 0.036116

b) 5 × 5 window pixel (Normalised values)

Fig. 3: Bright star input pattern

23 25 28 27 21

25 35 48 38 27

25 48 64 45 23

24 43 56 37 28

25 28 35 28 24

a) 5 × 5 window pixel (Original values)

0.359375 0.390625 0.437500 0.421875 0.328125

0.390625 0.546875 0.750000 0.593750 0.421875

0.390625 0.750000 1 0.703125 0.359375

0.375000 0.671875 0.875000 0.578125 0.437500

0.390625 0.437500 0.546875 0.437500 0.375000

b) 5 × 5 window pixel (Normalised values)

Fig. 4: Faint star Input pattern

21 21 22 25 19

25 21 25 20 24

22 22 201 85 22

22 19 21 24 23

23 22 21 19 24

a) 5 × 5 window pixel (Original values)

0.104478 0.104478 0.109453 0.124378 0.094527

0.124378 0.104478 0.124378 0.099502 0.119403

0.109453 0.109453 1 0.422886 0.109453

0.109453 0.094527 0.104478 0.119403 0.114428

0.114428 0.109453 0.104478 0.094527 0.119403

b) 5 × 5 window pixel (Normalised values)

Fig. 5: High-Energy cosmic ray input pattern

21 21 22 22 23

18 22 23 18 19

20 23 187 27 21

21 24 93 30 23

22 16 21 19 22

a) 5 × 5 window pixel (Original values)

0.112299 0.112299 0.117647 0.117647 0.122995

0.096257 0.117647 0.122995 0.096257 0.101604

0.106952 0.122995 1 0.144385 0.112299

0.112299 0.128342 0.497326 0.160428 0.122995

0.117647 0.085561 0.112299 0.101604 0.117647

b) 5 × 5 window pixel (Normalised values)

Fig. 6: Intermediate-Energy cosmic ray input pattern



3.2.3 Noise input pattern:
Figure 8 provides an example of the noise input pattern.

3.3 Output patterns
The present SIIS-ANN was trained with all desired output

values (oi) set to zero, except the value for the class of the in-
put pattern, which was set to unity. Table (1) summarises the
desired output values for a star, a cosmic ray, and noise.

3.4 Training error
For the purpose of weight adjustment in each training

step, the error to be reduced is usually that computed only for
the pattern currently being undertaken. To assess the quality
and success of the training, however, the joint errors must be
computed for the entire batch of training patterns.

It should be pointed out that networks in classification
applications may perform as excellent classifiers and may
exhibit zero decision errors while still yielding substantial con-
tinuous response (cumulative and root mean square) errors.
In this case, the decision error adequately reflects the accu-
racy of the neural network classifiers. This error was adopted
for the network training.

While training the present SIIS-ANN, all the desired
output values were set to the values listed in Table (1). In
addition, the decision error was used to terminate the train-
ing process when it reached, practically, a zero value. Such
an error is defined by:

E
N
PKd

err�

where Nerr is the total number of bit errors resulting at K
thresholded outputs over the complete cycle, and P is the
number patterns. In our SIIS-ANN, K = 3, and Nerr is com-
puted as follows:

� At the beginning of each training cycle set Nerr=0
� For an individual pattern:

IF the desired output = 1 and the actual output � 0.9
or

the desired output = 0 and the actual output � 0.1
THEN Nerr is incremented and the step is re-executed.

� At the end of the cycle set E N PKd err�

3.5 Learning factors
Implementation of the error back-propagation learning

algorithm may encounter various difficulties. One of the
problems is that the error minimisation procedure may pro-
duce only shallow local minima in many of the training cases.
This may be sufficiently avoided by including some form of
randomness in the algorithm concerning:

a- Initial weights

The weights of the network to be trained are typically in-
itialised at small random values. The choice of initial weights
is, however, only one of several factors affecting the training of
the network toward an acceptable minimum error.

The initial weights of the present network were initialised
at small random values (between 0.0 and 0.1), except the bias
values (v1,0, v2,0, v3,0, v4,0, w1,0, w2,0, and w3,0) for the hidden
and output layers. These biases were initialised at negative
random small values (between 0.0 and �0.1).

b- Learning constant

Various values were adopted for the learning constant �. It
was found that the values of the cumulative, root mean square
and decision errors reached their minimum and acceptable
values after 400 and 5000 learning cycles for � = 0.1 and
� = 0.01, respectively [9]. However, the latter value (� = 0.01)
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19 25 23 20 21

22 22 22 21 21

21 20 61 19 21

21 22 22 22 25

21 24 20 21 21

a) 5 × 5 window pixel (Original values)

0.311475 0.409836 0.377049 0.327869 0.344262

0.360656 0.360656 0.360656 0.344262 0.344262

0.344262 0.327869 1 0.311475 0.344262

0.344262 0.360656 0.360656 0.360656 0.409836

0.344262 0.393443 0.327869 0.344262 0.344262

b) 5 × 5 window pixel (Normalised values)

Fig. 7: Low-Energy cosmic ray input pattern

20 19 22 25 23

23 24 22 22 24

21 21 27 22 21

21 24 25 21 22

19 21 24 23 16

a) 5 × 5 window pixel (Original values)

0.740741 0.703704 0.814815 0.925926 0.851852

0.851852 0.888889 0.814815 0.814815 0.888889

0.777778 0.777778 1 0.814815 0.777778

0.777778 0.888889 0.925926 0.777778 0.814815

0.703704 0.777778 0.888889 0.851852 0.592593

b) 5 × 5 window pixel (Normalised values)

Fig. 8: Noise input pattern

O1 O2 O3

Star 1 0 0
Noise 0 1 0

Cosmic Ray 0 0 1

Table 1: The desired output values for a star, a cosmic ray, and
noise



accelerated the present SIIS-ANN convergence without over-
shooting the solution.

c- Momentum term
The momentum term was adopted to be 0.5 in order to

accelerate the convergence of the error back-propagation
learning algorithm of our SIIS-ANN.

3.6 SIIS-ANN implementation
The developed SIIS-ANN deals with CCD image frames

for scanning and searching for the Local Central Peaked Pixel
(LCPP) whose datum is larger than those of the surrounding
ones [9, 10]. This technique significantly reduces both the
search space and the required computer time. When such
a pixel is found the surrounding 24-inputs are adopted,
normalised to the value of the LCPP, and then mapped to the
network. The outputs are then evaluated and the following
three cases are considered for each input pattern:
Case 1: IF the first output > 0.9 AND

the second output < 0.1 AND
the third output < 0.1

THEN classify this pattern as a STAR image
Case 2: IF the first output < 0.1 AND

the second output > 0.9 AND
the third output < 0.1

THEN classify this pattern as NOISE
Case 3: IF the first output < 0.1 AND

the second output < 0.1 AND
the third output > 0.9

THEN classify this pattern as a COSMIC RAY

3.7 SIIS-ANN test
The present method was coded in C computer language

and applied to the test pattern set (Sec. 3.2). The results
obtained agree exactly with the prior known input. However,
it is necessary to consider a practical application in order to
verify the applicability, reliability and limitations of SIIS-ANN
against one of the known packages currently used by astrono-
mers. This was performed through the test case given in the
following section.

4 Application

4.1 Test case
A test case was applied in order to evaluate our method in

comparison with the DAOPHOT [7], which is widely used by
astronomers. A CCD frame of the star cluster M67 was avail-
able together with the recently updated version of this code
(DAOPHOTII) as well as all relevant and necessary input files,
that need tedious and laborious work to acquire [11]. This is a
cluster that is well studied, and accurate astronomical investi-
gations are available. Under these circumstances, a compari-
son between the two methods was realistic. The frame was
3 2 0 × 350 pixels and was taken through the visual optical
band within 30 seconds of exposure time.

4.2 Results and discussions
The adopted frame was reduced employing the two codes.

The present code identified 134 stellar images while 137

stellar images were recognised using the other code. The
two methods agree for 132 images, which are displayed by
asterisks in Figure 9. On the one hand there were 2 images
identified by the present method. These represent faint star
images and designated by circles in the figure. The other
method could not find these. On the other hand, there were
5 images are recognised by DAOPHOTII. Of these, three
stellar images are located at the first or the second pixel close
to the frame borders. These are plotted as filled squares in the
figure. This case implies that these stars are partially imaged
and hence they are of no astronomical importance. In addi-
tion, unreliable astronomical data is obtained by Gaussian
fitting, as in the DAOPHOTII case, by incomplete data. Our
method is not able to deal with cases for which 5 × 5 array
data are not available. The two other images are plotted as
open squares in a position where our method identified one
image only. Only one star can be seen at this location through
the Palomar Observatory Sky Survey photographic plate. The
ID charts given by Johnson [12], Eggen [13] and Kent et al
[14] also resolve this controversy in favour of our method.
Inspection of the data around this location reveals that the
image is near saturation. For this case, DAOPHOTII assigns
two overlapped images through a non-linear fitting process.

The computer time needed for executing SIIS-ANN
code has been estimated at 45 seconds using a Pentium II
(233MHz – processor) personal computer to display the im-
age via the monitor, to identify stellar images and to encircle
them on the display. By contrast a very much longer time
is required for running DAOPHOTII, as reported in the man-
ual [15]. DAOPHOTII needs a few minutes to a few hours,
mainly for preparing the auxiliary input files necessary for ex-
ecution. Moreover, as pointed out by Stetson (op cit.), at least
4Mb HD free space are required to reduce a 512 × 512-pixel
frame. On the other hand, regardless of the frame size a few
KB of HD free space is sufficient for executing our method to
save the position and peak data for the images that are found
of stars and cosmic rays.

5 Conclusions
The present study shows that, in comparison with

DAOPHOTII, the method has the advantages that:
a) Better reliability is provided.
b) There is considerable higher recognition ability for faint

images of stars.
c) Extremely short execution time is needed.
d) Neither user intervention nor prior knowledge about the

CCD frame is needed.
e) No complicated computation or numerical fitting process

is performed.
f) No large HD free space is required, even for large image

frames.
The only limitation of the present method is its inability to

identify objects having centres at the first or second pixel close
to the frame borders. Such an objects, even if it is a star image
is of no astronomical significance, as it is an incomplete im-
age. Hence this limitation can be disregarded.

The SSIS-ANN method possesses remarkable features for
practical applications, and it is planned to extend its capabil-
ity to identify images of galaxies.
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Fig. 9: Map of the images of stars recognised in the M67 cluster frame
North is UP and East is to the left
Asterisks: images identified by both methods
Circles: images identified by the SIIS-ANN method only
Squares: images identified by the DAOPHOTII method only


