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Abstract. Searching for a stationary object in an unknown environment can be formulated as an
iterative procedure consisting of map updating, selection of a next goal and navigation to this goal. It
finishes when the object of interest is found. This formulation and a general search structure is similar
to the related exploration problem. The only difference is in goal-selection, as search and exploration
objectives are not the same. Although search is a key task in many search and rescue scenarios, the
robotics community has paid little attention to the problem. There is no goal-selection strategy that
has been designed specifically for search. In this paper, we study four state-of-the-art strategies for
multi-robot exploration, and we evaluate their performance in various environments with respect to the
expected time needed to find an object, i.e. to achieve the objective of the search.
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1. Introduction
Searching for a stationary object of interest in a known
or unknown environment is a practical task in every-
day life. Almost everyone, for example, has lost keys
or has forgotten where he/she put his/her glasses,
cellular phone or wallet, and has tried to find them.
An important task in the search and rescue scenario
is to find a black box flight recorder or debris after a
plane crash, or victims/survivors after an accident or
a catastrophe.

Although these practical applications and many oth-
ers exist, the search problem has been addressed only
marginally by the robotics community. Some effort
has been devoted to the single and multi-robot search
problem for environments known a priori. Sarmiento
et al. [1] formulate the problem in such a way that the
time required to find an object is a random variable
induced by the choice of a search path and a uniform
probability density function for the location of the
object. They propose a two-stage process to solve the
problem. First, a set of locations to be visited (known
as guards, from the art gallery problem [2]) is deter-
mined. An order for visiting these locations while
minimizing the expected time to find an object is then
sought. The optimal order is determined by a greedy
algorithm in a reduced search space, which computes a
utility function for several steps ahead. This approach
is then used in [3], where robot control is assumed in
order to generate smooth and locally optimal trajec-
tories. Hollinger et al. [4] utilize a Bayesian network
to estimate the posterior distribution of the position
of the target and present a graph search to minimize
the expected time needed to capture a non-adversarial
object.
A single-robot search in known environments can

also be formulated as the Traveling Deliveryman Prob-

lem (TDP, also known as the Traveling Repairman
Problem or the Minimal Latency Problem). This prob-
lem is studied by the operational research community,
and is known to be NP-hard, even for a single robot [5].
Recently, several approximation algorithms have been
presented. Salehipour et al. [6] have presented a meta-
heuristics combining GRASP (General Randomized
Adaptive Search) with VND (Variable Neighborhood
Descent). Another metaheuristics, called VNS (Vari-
able Neighborhood Search), is introduced in [7], while
linear programming is used in [8].

To the best of the authors’ knowledge, the problem
of a multi-robot search in an unknown environment
has not been studied yet. However, methods devel-
oped for multi-robot exploration can be adopted for
the search problem, as these two problems are similar
in a general structure and problem formulation. A
popular method for both single-robot and multi-robot
exploration is frontier-based exploration, introduced
by Yamauchi [9], which has been further extended
by many researchers, see for example [10, 11] for an
experimental evaluation of several single-robot strate-
gies. For the multi-robot case, Wurm et al. [12] present
goal assignment, based on the Hungarian method [13].
Burgard et al. [14] use a decision theory to coordinate
the exploration: they estimate the expected informa-
tion gain of a goal and combine it with a path cost.
The method presented in Stachniss et al. [15] takes the
structure of the environment into account by detect-
ing rooms and corridors and trying to assign robots
to separated rooms. In addition, approaches based
on K-means clustering and assigning the clusters to
particular robots are presented in [16, 17]
Intuitively, multi-robot search is a process of au-

tonomous navigation of a team of mobile robots in an
a-priori unknown environment in order to find an ob-
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ject of interest. A natural condition is to perform this
process with minimal usage of resources, e.g., time
of search, trajectory length, or energy/fuel consump-
tion. Following Yamauchi [9], the search algorithm
can be defined (similarly to exploration) as an iterative
procedure consisting of model updating with current
sensory data, selection of a new goal for each robot
based on current knowledge of the environment, and
subsequent navigation to this goal. As we discussed in
our previous paper [18], focused on a single-robot case,
the key difference between search and exploration lies
in the way in which the next goals to be visited are
chosen at each iteration. We showed that the objec-
tives of the two problems differ, so that trajectories
optimal for exploration are not optimal for search
in general. Nevertheless, exploration goal-selection
strategies may be used for search.
The aim of this paper is to study the behavior of

several state-of-the-art exploration strategies and to
evaluate their performance in the search task. The
rest of the paper is organized as follows. A definition
of the problem is presented in Section 2, while the
frontier-based framework for search is introduced in
Section 3, and strategies are described in Section 4.
An evaluation of the results and a discussion are pre-
sented in Section 5. Finally, Section 6 is dedicated to
concluding remarks.

2. Problem formulation
The formulation of a multi-robot search is a direct
extension of the single-robot case, introduced in [18].
We assume a team of N mobile robots equipped with
a ranging sensor with a fixed, limited range (e.g.,
a laser range-finder) operating in an unknown envi-
ronment. The search problem is defined as navigation
of particular robots through this environment in or-
der to find a stationary object placed randomly in
the environment. The search is completed when the
object is first detected by robot sensors1, and the
natural goal is to minimize the time for this detec-
tion. The objective is to find a tuple of trajectories
Ropt =

〈
Ropt

i |i = 1 . . . N
〉
among all possible tuples

of trajectories R = 〈Ri|i = 1 . . . N〉 minimizing the
expected (mean) time for detecting the object:

Ropt = arg min
R

E(T |R), (1)

where Ri and Ropt
i are trajectories of the i-th robot,

T is the time needed to traverse R and

Tf = E(T |R) =
∞∑

t=0
tp(t). (2)

p(t) can be generally an arbitrary probability density
function, if priory information about the position of
the object is available. Nevertheless, we consider that

1We do not address in this paper the problem of how to
recognize the object to be detected. Instead, we consider that
this functionality is available.

this information is not provided, so we define the
probability p(t) as the ratio of the area AR

t newly
sensed at time t when the robots follow trajectories
R and Atotal, the area of the whole environment in
which the robots operate:

p(t) = AR
t

Atotal
.

We can therefore rewrite (1) as

Ropt = arg min
R

E(T |R) = arg min
R

∞∑
t=0

tAR
t , (3)

3. Framework
The framework for multi-robot search is based on
Yamauchi’s frontier-based approach [9], successfully
used for exploration, which uses an occupancy grid
as the environment representation. This approach is
centralized, which means that the occupancy grid is
global and it is built by a central unit by integrating
raw sensor measurements from all robots. Also, all
decisions are made centrally and then distributed to
the particular robots. The key idea of the approach
is to detect frontier cells, i.e., reachable grid cells
representing free regions adjacent to at least one as
yet unexplored cell. The frontier is a continuous set of
frontier cells such that each frontier cell is a member
of exactly one frontier.

The search algorithm consists of several steps that
are repeated as long as some unexplored area remains.
The process starts with individual robots reading ac-
tual sensor information. After some data processing,
the existing map is updated with this information.
New goal candidates are then determined and goals
for particular robots are assigned using a defined cost
function. Having assigned the goals to the robots, the
shortest path from the robots to the goals are found.
Finally, the robots are navigated along the paths. The
whole process is summarized in Algorithm 1.

Algorithm 1: Frontier-based search algorithm
while unexplored areas exist do

read current sensor information;
update the map with the obtained data;
determine new goal candidates;
assign the goals to the robots;
plan paths for the robots;
move the robots towards the goals;

4. Exploration strategies
Many exploration strategies exist, see for example [19].
Within the exploration framework presented here, we
chose and implemented four methods, which are cen-
tralized, do not use a distance-based cost for goal
evaluation, and are easy to implement. The following
paragraphs give an overview of these methods.
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(a) (b)

Figure 1. Greedy assignment, (a) two robots explor-
ing the same goal, (b) an inefficient assignment of
goals.

4.1. Greedy approach
A simply and easily implementable strategy is de-
scribed in [9] – each robot greedily heads towards the
best goal (according to a cost function) without any
coordination between robots. The strategy lacks opti-
mality2, since one goal can be selected and explored
by many robots as depicted in Fig. 1(a). To avoid this
inefficiency already selected goals can be discarded
from further selection. This is used in the Broad-
cast of Local Eligibility (BLE) assignment algorithm,
developed by Werger & Mataric [20], see Algorithm 2.

Algorithm 2: BLE assignment algorithm.
while any robot remains unassigned do

find the robot-goal pair (i, j) with the highest
utility;
assign the goal j to the robot i and remove
them from the consideration;

However, this remains a greedy algorithm, and does
not necessarily produce the optimal solution. The
solution depends on the order of the robot-goal assign-
ments. Fig. 1(b) depicts an example of an inefficient
assignment.

4.2. The Hungarian method
The Hungarian method, first introduced in [13], is
more sophisticated. It is an optimization algorithm
which solves the worker-task assignment. The assign-
ment can be written in the form of the n× n matrix
C, where element ci,j represents the cost that the j-th
task has been assigned to the i-th worker. In our
case, we define the cost as the length of the path from
the current position of the robot to the goal. The
Hungarian method finds the optimal assignment for
the given cost matrix C in O(n3).

2Note that we make the decision on the basis of only current
knowledge of the map. From this perspective, the approach
from Fig. 1(b) seems to be better than the approach in Fig. 1(b).
Nevertheless, it might be globally more efficient to leave two
robots to explore the same goal in some steps of the exploration
process.

The algorithm requires the number of robots to be
the same as the number of goals, which cannot be
guaranteed throughout the exploration. If the number
of robots or goals is lower, imaginary robots or goals
can be added to satisfy the assumption. They have
a fixed cost assigned to them, so they do not affect
the real robots/goals. In the selection, the imaginary
robots, and targets are skipped. This strategy does
not assign the same goal to different robots and it
does not depend on the order of selection.

4.3. K-means clustering
In the majority of multi-robot tasks, the robots start
from the same area, e.g., from the entrance to a build-
ing. This leads to exhaustive exploration of the start-
ing area during the first phase of exploration. [16]
present a strategy that attempts to spread the robots
quickly in the environment, so that each robot fo-
cuses on an individual part of the environment, for
which it will remain responsible. This is done by us-
ing K-means clustering, which divides the remaining
unknown space into the same number of regions as
the number of robots. Each particular region is then
assigned to the closest robot. After the assignment,
each robot chooses a frontier according to a predefined
cost function. The cost of frontier Fj for robot Ri

assigned to region ζi is defined as:

ci,j =
{

∆ + e(Fj , Ci) + oi,j Fj /∈ ζi,

d(Fj , Ri) + oi,j Fj ∈ ζi,

where ∆ is a constant penalization representing the
diagonal length of the map, e is the Euclidean distance,
Ci is the centroid of the region, d is the real path cost
defined by any path planning algorithm, and oi,j is
the accumulated penalization increasing the cost when
the frontier has already been selected.
The frontier that does not belong to the assigned

region receives a high penalization ∆, so it can happen
that there is no frontier in the assigned region, in
which case, the robot selects the closest frontier to its
region. As a result, robots tend to work separately in
their assigned regions. If the assigned region is not
directly accessible, other regions are explored on the
way to the assigned region. The robots explore all
these separate regions simultaneously, because each
robot heads to its own region. This disperses the
robots in the environment, and different parts of the
environment are explored at similar speeds.
In general, the K-means algorithm consists of the

following steps.
(1.) Randomly choose K centroids Ci where 1 ≤ i ≤
K.

(2.) Classify each not yet explored cell in the environ-
ment to the class ζi of its closest centroid Ci.

(3.) Determine a new centroid for each class.
(4.) If all the centroids did not change, finish. Other-
wise, continue with the step 2.
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(a) (b) (c) (d)

Figure 2. Maps used in the experiments. The starting positions are marked with the green circles: (a) Empty map
with dimensions 50 × 50m; (b) Arena map with dimensions 50 × 50m; (c) Jh map with dimensions 52.5 × 60m; (d)
Hospital map with dimensions 138 × 110.75m.
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Figure 3. Empty map size progress: for 4 robots (left), for 6 robots (center), for 8 robots (right).

5. Results
The strategies mentioned above (Greedy, BLE, the
Hungarian method, and K-means clustering) were
implemented in a framework for search/exploration
in a polygonal domain [21]. The framework uses
ROS [22] as a communication middleware. Sensor
measurements are represented by polygons and com-
bined together by polygon operations. This way, a
polygonal representation of the environment is built.
The framework therefore enables search/exploration
to be performed with a larger number of robots, in
larger experiments, and re-planning can be carried out
faster than is possible in a grid-based approach. Ex-
periments to compare the strategies were performed
in simulation, using maps with various sizes and struc-
tures, see Figure 2.
The empty map 2(a) was created to simulate the

trivial case of a big room without obstacles. The arena
map 2(b) represents a slightly structured environment
with large corridors and rooms. The jh map 2(c)
represents a real administrative building with many
separated rooms. The hospital map 2(d) is a part
of the hospital-section map from the Stage simulator
representing another building.
All the simulations were examined on the same

hardware with a quad-core processor on 3.30 GHz
running x86_64 GNU/Linux Kubuntu 3.0.0-20, ROS
electric with the Stage simulator and gcc 4.6.1.

The considered numbers of robots are m = {4, 6, 8},
while the sensor range is set to ρ = 5 meters with
a 270° field of view. The robots are controlled using
our implementation of the SND algorithm [23] as

a ROS node, and the planning period was set to 1
second.

Although all the strategies are deterministic, other
parts of the exploration process (especially robot con-
trol) and thus the whole process are not deterministic.
Each experimental setup determined by a tuple 〈map,
number of robots, strategy〉 was therefore repeated
several times to obtain statistical characteristics of
the exploration. The number of runs differs for dif-
ferent maps, as does the time demand for performing
a certain number of experiments. The number of
repetitions for empty, which is the easiest map, was
30. For arena there were 22 runs, while 17 runs were
performed for each setup for jh and 10 for hospital.
As the computations are not time-consuming, the

experiments were speeded up 3 times in the Stage
configuration file. This has the same effect as when
the planning period is set to 3 seconds and the sim-
ulation speed is normal. The benefit is that we can
perform the experiments faster. This is crucial, as we
performed about 700 experiments, each taking 5 to
15 minutes.

A statistical evaluation of the strategies is shown
in Figs. 3–8. The first two figures depict the progress
of a newly explored area averaged for each map and
strategy over all runs, while Figs. 7 and 8 display five-
number summaries of the expected time for finding
object — Tf — as defined in (2). AR

t is computed as
the difference of the volumes of the already explored
areas at times t and t− 1, while Atotal is the volume
of the explored area in the final map.
For the empty environment and 4 to 6 robots, all
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Figure 4. Arena map size progress: for 4 robots (left), for 6 robots (center), for 8 robots (right).
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Figure 5. Jh map size progress: for 4 robots (left), for 6 robots (center), for 8 robots (right).
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Figure 6. Hospital map size progress: for 4 robots (left), for 6 robots (center), for 8 robots (right).

the methods, except K-means, report similar results
with a difference of 0.3% for 4 robots and 1% for
6 robots. The worse behavior of the K-means strategy
(6% worse than the Hungarian method for 4 robots
and 8.5% worse for 6 robots) is caused by a non appro-
priate distribution of robots in the first stages of the
search, and the need to redistribute them later. The
situation is more balanced for 8 robots, but the greedy
approach and the Hungarian approach behave slightly
better. The performance of the methods in the other
maps shows similar characteristics. Greedy performs
worst in almost all cases, followed by BLE. In gen-
eral, the best results were achieved by the Hungarian
method, followed by K-means in arena and hospital.
K-means even outperforms the Hungarian method in
some cases. Note the poor results of K-means for jh.
This environment contains many small rooms, and
its partitioning forces robots to explore small regions
partially spread over two or three rooms. This slows
down the search as more than one robot visits the
same room, in many cases.

6. Conclusion

Although search in unknown environments has many
practical applications, it has until now been addressed
only marginally by the robotics community. In this pa-
per, we define the problem for a team of robots, and
present the results of several standard exploration
approaches for a search. Although the Hungarian
method outperforms the other approaches in most
cases, the differences in results appear to be marginal,
and differ for different maps and for different numbers
of robots. In our further research we therefore plan to
study the behaviour of the methods in greater detail
in order to clarify the reasons for their performance.
Although the number of experiments that have been
performed is not small, more experiments are needed
in order to draw statistically reasonable conclusions,
and especially to provide a statistical analysis of vari-
ance. We believe that this study will help in the design
of novel methods for search in future.
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Figure 7. Comparison of the strategies, i.e. the five-number summaries of Tf for empty (left) and for arena (right)
map.
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