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Abstract. We present a method that distributes a swarm of heterogeneous robots among a set of tasks
that require specialized capabilities in order to be completed. We model the system of heterogeneous
robots as a community of species, where each species (robot type) is defined by the traits (capabilities)
that it owns. Our method is based on a continuous abstraction of the swarm at a macroscopic level
as we model robots switching between tasks. We formulate an optimization problem that produces
an optimal set of transition rates for each species, so that the desired trait distribution is reached
as quickly as possible. Since our method is based on the derivation of an analytical gradient, it is
very efficient with respect to state-of-the-art methods. Building on this result, we propose a real-time
optimization method that enables an online adaptation of transition rates. Our approach is well-suited
for real-time applications that rely on online redistribution of large-scale robotic systems.
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1. Introduction
Technological advances in embedded systems, such as
component miniaturization and improved efficiency
of sensors and actuators, are enabling the deploy-
ment of very large-scale robot systems, i.e., swarms
of robots. However, the smaller we design our plat-
forms, the more stringent the tradeoffs we need to
make with respect to endowed capabilities. As a
consequence, investigators are composing their robot
systems with multiple, heterogeneous types of robots
in order to tackle increasingly challenging tasks [1, 2].
Our premise is that, in a swarm of robots, one single
type of robot cannot cater to all aspects of the task at
hand, because at the individual level, it is governed
by design rules that limit the scope of its capabilities.

In this work, our objective is to distribute a swarm
of heterogeneous robots as quickly and efficiently as
possible among tasks that require specialized compe-
tences. This objective is part of a larger vision to
develop control and coordination strategies for teams
of heterogeneous robots with specific capabilities. For
example, a larger robot may be able to carry more
powerful sensors, but may be less agile than its smaller
counterpart. Or, we could consider the limited pay-
load of aerial robots: If a given task requires rich
sensory feedback, multiple heterogeneous aerial robots
can complement each other by carrying distinct sen-
sors, altogether more than a single one could carry
on its own. Initially, we consider tasks that are to
be performed in parallel, continuously, and indepen-
dently, yet we develop a framework that can easily be
extended to accommodate temporal and precedence
constraints. Instances of information gathering lend
themselves naturally to our problem formulation, with
applications to surveillance, environmental monitor-

ing, and situational awareness [3–5].
Given a set of tasks, and knowledge about what the

task requirements are, our problem considers which
robots should be allocated to which tasks. This prob-
lem is an instance of the MT-MR-TA: Multi-Task
Robots, Multi-Robot Tasks problem [6], and can be
reformulated as a set-covering problem that stems
from combinatorial optimization. This concept con-
siders subsets of robots in a multi-robot system, and
pairs them optimally (given a cost function) to tasks.
This problem is strongly NP-hard [7]. A number of
heuristic algorithms have been proposed. However,
the running times of these algorithms are functions of
the sizes of the feasible subsets (of robots paired to
a task), and hence, become very expensive for large
robot teams and swarms. Furthermore, the algorithms
are penalized when multiple robot-subset-to-task com-
binations are feasible (this is the case, for example,
when robots have overlapping capabilities).

These algorithms are not suitable for large-scale sys-
tems, such as robot swarms. In particular, for systems
that are required to adapt to changing task require-
ments online, we need to consider algorithms that are
efficient and implementable on mobile platforms that
run them in real-time. Our method builds on previous
work done in the domain of dynamic redistribution
of homogenous robot swarms [8–10]. We consider
a strategy that is scalable in the number of robots
and their capabilities, and is robust to changes in
the robot population. The key property of this strat-
egy is its inherently decentralized architecture, with
robots switching between behaviors (tasks) stochas-
tically. This model is inspired by previous work in
the swarm-robotic domain that explores self-organized
behavior of natural systems [11, 12].
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The present work focuses on the optimization of
transition rates that enables the robot swarm to con-
verge quickly to a configuration that satisfies a de-
sired trait distribution. The key difference between
our work and previous work is that we formulate our
desired state as a distribution of traits among sites,
instead of specifying the desired state as a direct mea-
sure of the robot distribution. In other words, our
framework allows a user to specify how much of a
given capability is needed for a given task, irrespec-
tive of which robot type satisfies that need. As a
consequence, we do not employ optimization methods
that utilize final robot distributions in their formula-
tions (which is the case in the works presented by [8]
and [13]). Instead, we explicitly optimize the distribu-
tion of traits, and implicitly solve the combinatorial
problem of distributing the right number of robots of
a given type to the right tasks. Indeed, we will later
show that there are cases where multiple final robot
distributions satisfy the desired trait distribution. In
such cases, state-of-the-art strategies require that we
first determine the best final robot distribution (one
that can be reached the fastest), and subsequently
optimize transition rates using methods such as in [8].

2. Problem Formulation
Heterogeneity and diversity are core concepts of this
work. To develop our formalism, we will borrow termi-
nology from biodiversity literature [14, 15]. We define
our robot system as a community of robots. Each
robot belongs to a species, defining the unique set of
traits that encodes the robots’ capabilities. In this
work, we will consider binary instantiations of traits
(corresponding to the presence or absence of a given
trait in a species). As an example, one trait might
consider the presence/absence of a particular sensor,
such as a camera or laser range finder. Another trait
might consider the capability of fitting through a pas-
sageway with a fixed width. In this work, we assume
that the tasks have been encoded through binary char-
acteristics that represent the skill sets critical to task
completion.

2.1. Notation
We consider a community of S robot species, with a
total number of robots N , and N (s) robots per species
such that

∑S
s=1N

(s) = N . The community is defined
by a set of U traits, and each robot species owns a
subset of these traits. A species is defined by a vector
q(s) = [q(s)

1 , q
(s)
2 , ..., q

(s)
U ]. We can then define a S ×U

matrix Q, with rows q(s):

Qsu =
{

0 if species s does not have trait u,
1 if species s has trait u.

We model the interconnection topology of the M sites
via a directed graph, G = (E ,V) where the set of
vertices, V, represents task sites {1, . . . ,M} and the
set of edges, E , represents the ordered pairs (i, j),

such that (i, j) ∈ V ×V , and i and j are adjacent. We
assume the graph G is a strongly connected graph,
i.e., a path exists between any pair of vertices (in
contrast to a fully connected graph, where an edge
exists between any pair of vertices). In other words,
if the nodes in our graph are physically distributed
sites, then, via some road, we can reach any other
site. We assign every edge in E a transition rate,
k

(s)
ij > 0, where k(s)

ij defines the transition probability
per unit time for one robot of species s at site i to
switch to site j. Here k(s)

ij is a stochastic transition
rule. We assume every robot has knowledge of G as
well as all the transition rates of its species k(s)

ij . We
note that this information is represented by a small
number of values (at most M2 ·S values, or much less
if the graph is sparse), and needs to be transmitted
to the robots only once, at the start of a run. We
impose a limitation on the maximum rate of each edge
with k(s)

ij < k
(s)
ij,max. These values can be determined

by applying system identification methods on the
actual system. For example, in a system where nodes
represent physically distributed sites, the transition
rate represents the rate with which a specific path is
chosen. This value can depend on observed factors,
such as typical road congestion or the condition of the
terrain.
The distribution of the robots belonging to a

species s at time t is described by a vector x(s)(t) =
[x(s)

1 (t), ...,x(s)
M (t)]>. Then, if x(s) are the columns of

X(t), and q(s) are the rows of Q, we have the M ×U
matrix Y that describes the distribution of traits on
sites. For time t this relationship is given by

Y(t) = X(t) ·Q (1)

As we will see in Section 2.3, there may be several
robot distributions X(t) that satisfy this equation for
a given Y(t).

2.2. Problem Statement
The initial state of the system is described by X(0),
and hence, the initial configuration of traits at the
sites is described by Y(0). The time evolution of the
number of robots of species s at site i is given by a
linear law

dx(s)
i

dt =
∑

∀j|(i,j)∈E

kjix(s)
i (t)−

∑
∀j|(i,j)∈E

kijx(s)
i (t). (2)

Then, for all species s, our base model is given by

dx(s)

dt = K(s)x(s) ∀s ∈ 1, . . . , S, (3)

where K(s) ∈ RM×M is a rate matrix with the prop-
erties

K(s)>1 = 0, (4)

K(s)
ij ≥ 0 ∀(i, j) ∈ E . (5)
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These two properties result in the following definition:

K(s)
ij =


k

(s)
ji , if i 6= j, (i, j) ∈ E ,

0, if i 6= j, (i, j) /∈ E ,
−∑M

i=1,(j,i)∈E k
(s)
ij if i = j.

Since the total number of robots and the number of
robots per species is conserved, the system in Eq. 3 is
subject to the constraint

X> · 1 = [N (1), N (2), . . . , N (S)]>. (6)

The goal is to find an optimal rate matrix K(s)F for
each species s so that we have

Ȳ = X̄ ·Q. (7)

In other words, the task is to redeploy the robots of
each species configured according to X(0) initially, so
that a desired trait configuration Ȳ is reached. In
doing this, we reach a robot configuration X̄ that
satisfies Eq. 1, subject to Eq. 6.

2.3. System Properties
Since we describe the desired configuration of our
system through Ȳ, the final robot distribution X̄ is
not known a priori. Given knowledge of Q we can
infer the following properties: If a solution to Eq. 7
subject to Eq. 6 exists, then
(1.) If rank(Q) < S, the system is underdetermined,
and an infinite number of solutions X̄ will satisfy
Eq. 7. In other words, at least one species in the
system can be replaced by a combination of the
other species.

(2.) If rank(Q) = S, only one solution X̄ exists that
satisfies Eq. 7. In other words, no species in the
system can be expressed as a combination of the
other species.

We note that solving case (1) is relevant when we
embed redundancy into the robot system, and case
(2) is relevant when we consider fully complementary
robot species.

3. Methodology
In this section, we describe our methodology for ob-
taining an optimal transition matrix K(s)F for each
species so that the desired trait distribution is reached.
Berman et al. [8] present an exposé of optimization
methods that can be used to obtain optimal transition
rates for a homogenous robot swarm that is required
to converge to a desired distribution. Two general
approaches are considered: convex optimization and
stochastic optimization. The convex optimization ap-
proach requires knowledge of the desired final robot
distribution. Indeed, our problem formulation spec-
ifies a desired trait distribution Ȳ without explicit
definition of the final robot distribution X̄. Hence,
convex optimization strategies as in [8] are not appli-
cable to our problem, unless rank(Q) = S, and we can

infer X̄. Given this rationale, we choose an optimiza-
tion approach that is able to find optimal transition
rates with knowledge of Ȳ and X(0), without knowl-
edge of X̄. Although fully stochastic schemes such
as Metropolis optimization have been shown to pro-
duce similar results [8], they are not computationally
efficient, and are ill-suited to real-time applications.
In the following, we present a differentiable objective
function that can be efficiently minimized through gra-
dient descent techniques. We show that our method
has a computational complexity that is well-suited
to real-time applications. Additionally, our method
explicitly minimizes the convergence time of K(s), un-
like the convex optimization methods presented in [8]
which approximate K(s) with a symmetric equivalent
(forcing bidirectionally equal transition rates between
sites).

3.1. Design of Optimal Transition Rates
We combine the solution of the linear ordinary differ-
ential equation, Eq. 3, and Eq. 7 to obtain the solution
for a desired trait distribution

Ȳ =
S∑
s=1

eK(s)Fτx(s)
0 · q(s), (8)

where τ is the time at which the desired state is
reached. We design our objective function as follows.
To find the values of K(s)F for all species for the given
initial configuration, X(0), we consider the following
optimization

minimize J (1) =
∥∥∥∥Ȳ−

S∑
s=1

eK(s)τx(s)
0 · q(s)

∥∥∥∥2

F

(9)

such that k(s)
ij < k

(s)
ij,max,

which formulates that a minimum cost is found when
the final trait distribution corresponds to the desired
trait distribution, subject to maximum transition rates
k

(s)
ij,max. The notation x(s)

0 is shorthand for x(s)(0).
The operator ‖ · ‖F denotes the Frobenius norm of
a matrix. There is no closed-form solution to the
optimization problem in Eq. 9, but we can use the
derivatives of J (1) with respect to the parameters to
perform gradient descent. So that the implementation
of the optimization function is efficient, it is impor-
tant that the function is differentiable and that an
analytical gradient can be computed. By applying
the chain rule, the derivative of our objective function
with respect to the transition matrix K(s) is

∂J (1)

∂K(s) = ∂J (1)

∂eK(s)τ
· ∂e

K(s)τ

∂K(s)τ
· ∂K(s)τ

∂K(s) . (10)

We first compute the derivative of the cost with respect
to the expression eK(s)τ :

∂J (1)

∂eK(s)τ
= 2
[∑
r∈S

eK(r)τx(r)
0 · q(r) − Ȳ

]
·
[
x(s)

0 · q(s)]>.
(11)
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The derivation of the 2nd element of Eq.10 requires
the derivative of the matrix exponential. Computing
the derivative of the matrix exponential is not trivial.
We adapt the closed-form solution given in [16] to our
problem, and write the gradient of our cost function
as

∂J (1)

∂K(s) = V−1>
[
V> ∂J (1)

∂eK(s)τ
V−1> �W(τ)

]
V>τ,

(12)
where � is the Hadamard product, K(s) = VDV−1

is the eigendecomposition of K(s). V is the M ×M
matrix whose jth column is a right eigenvector corre-
sponding to eigenvalue di, and D = diag(d1, . . . , dM ).
The matrix W(t) is composed as follows 1

W(t) =
{

(edit − edjt)/(dit− djt) if i 6= j,
edit if i = j.

3.2. Optimization of Convergence Time
The cost function in Eq. 9 does not consider conver-
gence time τ as a variable. By adding a term that pe-
nalizes high convergence time values, we can compute
transition rates that explicitly optimize convergence
time. The modified objective function is

minimize J (2) = J (1) + ατ2 (13)

such that k(s)
ij < k

(s)
ij,max and τ > 0,

and α > 0. By increasing α, we increase the impor-
tance of the convergence time (by penalizing high
values of τ). The derivative with respect to the tran-
sition rates is

∂J (2)

∂K(s) = ∂J (1)

∂K(s) . (14)

In order to optimize the convergence time, we need
the derivative with respect to τ . This derivative is
computed analogously to the derivative with respect
to K(s) (confer Eq. 12). We have

∂J (2)

∂τ
= ∂J (1)

∂τ
+ 2ατ (15)

with

∂J (1)

∂τ
=

S∑
s=1

1>V−1>A1V> ·K(s)1 (16)

and
A1 = V> ∂J (1)

∂eK(s)τ
V−1> �W(τ). (17)

The optimization of Eq. 13 produces transition rates
that lead to the desired trait distribution quickly, but
there is no guarantee that this is the steady state of
K(s). If we compute the transition rates at the outset

1Here, we assume that that K(s) has M distinct eigenvalues.
If this is not the case, an analogous decomposition of K(s) to
Jordan canonical form is possible, as elaborated in [16]. We
note that for most models of interest, however, this is rarely
the case.

of the experiment (without refining them online), we
may wish to ensure that the state reached at the
optimal time tF remains near-constant. Hence, we
modify our cost function in Eq. 13 as follows.

minimize J (3) = J (2) + β

S∑
s=1

∥∥eK(s)τx(s)
0 (18)

− eK(s)(τ+ν)x(s)
0
∥∥2

2

such that k(s)
ij < k

(s)
ij,max and τ > 0,

and β > 0. The additional term in our cost func-
tion allows us to ensure that the robot distribution
reached by employing K(s)F remains near-constant
for arbitrarily long time intervals ν. This is possible
because our model in Eq. 3 is stable [9], and the dif-
ference between the current robot distribution and
the one at steady state can only decrease monoton-
ically over time. By increasing the value of β, the
difference of the robot distributions at times τ and
τ + ν is decreased. In other words, as we will see in
Section 4, the trait distribution corresponding to the
steady state robot distribution of K(s) gets arbitrarily
close to the desired trait distribution Ȳ as β increases
(the same is true when we increase ν). Note that when
α = 0, β should not be infinitely large, as in this case,
K(s)F = 0. However, for all practical purposes β is
bounded and α > 0.
Let us refer to this additional third term of J (3)

(and second term of Eq. 18) as J (3,3). Then, the
derivative of the new objective function with respect
to the transition rates can be expressed as

∂J (3)

∂K(s) = ∂J (2)

∂K(s) + ∂J (3,3)

∂K(s) . (19)

Again, we apply the chain rule to obtain

∂J (3,3)

∂K(s) = ∂J (3,3)

∂eK(s)τ

∂eK(s)τ

∂K(s)τ

∂K(s)τ

∂K(s) (20)

− ∂J (3,3)

∂eK(s)(τ+ν)
∂eK(s)(τ+ν)

∂K(s)(τ + ν)
∂K(s)(τ + ν)

∂K(s) .

The outer derivative is

∂J (3,3)

∂eK(s)τ
= ∂J (3,3)

∂eK(s)(τ+ν) (21)

= 2β
[
eK(s)τx(s)

0 − eK(s)(τ+ν)x(s)
0

]
· x(s)

0
>
.

We apply the same development as in Eq. 12 to obtain
the equation

∂J (3,3)

∂K(s) = V−1>A2V> · τ −V−1>A3V> · (τ + ν)
(22)

with

A2 = V> · ∂J
(3,3)

∂eK(s)τ
·V−1> �W(τ) (23)
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and

A3 = V> · ∂J (3,3)

∂eK(s)(τ+ν) ·V
−1> �W(τ + ν). (24)

For all above cost functions, z = 1, 2, 3, the derivative
with respect to the off-diagonal elements ij of the
matrix K(s), with (i, j) ∈ E , is

∂J (z)

∂K(s)
ij

=
{
∂J (z)

∂K(s)

}
ij

−
{
∂J (z)

∂K(s)

}
jj

, (25)

where {·}ij denotes the element on row i and column
j. The derivative with respect to time τ is analogous.
Finally, we summarize our optimization problem as
follows:

K(s)F, τF = argmin
K(s),τ

J (3), (26)

under the constraints shown in Eq. 18. To solve
the system, we implement a basin-hopping optimiza-
tion algorithm [17], which attempts to find the global
minimum of a smooth scalar function. Locally, our
basin-hopping algorithm uses a quasi-Newton method
(namely, the Broyden-Fletcher-Goldfarb-Shanno algo-
rithm [18] with bound constraints).

3.3. Computational Complexity
The computational complexity of computing the gra-
dient of our objective function is O(S ·M3 +S ·M2 ·U).
The first part of this complexity is dictated by the
eigenvalue decomposition, which is known to be
O(M3) for non-sparse matrices [19]2. We compute
this decomposition only once per optimization (see
Eq. 12, where K(s) = VDV−1), for each optimization
of K(s). The second part is dictated by the multipli-
cation of the matrices in Eq. 12, for which the cost
is O(M2 · U). Globally speaking, the computation
grows linearly with the number of species and traits,
and it grows cubically with respect to the number of
tasks. Overall, for the results shown in Section 4, the
average time to compute the gradient for a system
withM = 8, U = 4, and S = 4 is around 1.35 ms with
ν = 0, and 2.2 ms with ν > 0 (the number of param-
eters to optimize can be as large as 225 in this case,
depending on the graph’s adjacency matrix). The
code was implemented in Python using the NumPy
and SciPy libraries, and tested on a 2 GHz Intel Core
i7 using a single CPU.

3.4. Continuous Optimization of K(s)

As shown above, the optimization of the objective
function J (3) is efficient and can be performed in real-
time. Building on this result, we can implement a
continuous, online optimization strategy that allows
us to refine the optimal K(s)F as a function of the
current state. In noisy systems, where the trajectories
of individual agents exhibit deviations from predicted

2In the special case where all eigenvalues are dis-
tinct, the eigenvalue decomposition can be reduced to
O(M2.376 log(M)) [20].

macroscopic trajectories, this strategy inevitably leads
to an improvement of the convergence time. By taking
the actual robot distribution into account, it can re-
compute updated optimal transition rates. Practically,
we initially compute K(s)F at time t = 0 to control
the system over a finite period δ from t = 0 to t = δ.
After that period (at time t = δ), we optimize a new
value of K(s)F that controls the system for the next
period, as a function of the actual robot distribution
that was encountered at time t = δ. This process
can be repeated indefinitely. The value δ is called the
sampling time. Formally, we write our control policy
as

K(s)F(t), τF(t) = argmin
K(s),τ

J̃ (3)(X(tp)) (27)

with tp ≤ t < tp + δ

tp ∈ kδ, k ∈ N,

where we rewrite our cost equation as a function of
the robot distribution

J̃ (3)(X) =
∥∥∥Ȳ−

S∑
s=1

eK(s)τx(s) · q(s)
∥∥∥2

F
+ ατ2 (28)

+ β

S∑
s=1

∥∥∥eK(s)τx(s) − eK(s)(τ+ν)x(s)
∥∥∥2

2
.

Note that J̃ (3)(X(0)) is equal to J (3). In practice, if
δ is small with respect to the rates at which robots
transition between sites (cf. kij,max), we set β = 0,
since the continuous optimization of K(s) enforces a
current state that is close to the desired state, irre-
spective of the steady-state distribution. For cases
where the optimization time becomes large (implying
that δ also becomes large), we either need to set β > 0,
or use a strategy that accounts for computation delay,
such as those presented in [21]. Also, we note that we
can accelerate the computations by setting the initial
values of the present sampling window with optimized
values of the preceding sampling window (i.e., warm
start).

4. Results
Previous work has shown the benefit of validating
methods over multiple, complementary levels of ab-
straction (sub-microscopic, microscopic, and macro-
scopic) [22]. In the present work, we propose an
evaluation of our methods on two levels: microscopic
and macroscopic. Indeed, the most efficient way of
simulating the swarm of robots is by considering a
continuous macroscopic model, derived directly from
the ordinary differential equation, Eq. 3. In order
to validate the control policy at a lower level of ab-
straction, we also implement a discrete microscopic
model that emulates the behavior of individual robot
controllers. This agent-level control is based on the
transition rates k(s)

ij encoded by the transition matrix
K(s): A robot of species s at site i transitions to site
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Figure 1. A strongly connected instance of a graph with 10 nodes representing spatially distributed sites (nodes)
and their paths (edges). The system includes 4 traits. The trait abundance at each node is represented by a bar plot.
Nodes 5 and 6 are highlighted. (a) Initial configuration (b) Desired final configuration.

j according to probability p(s)
ij that is an element of

the matrix P(s) = eK(s)∆T , where ∆T is the dura-
tion of one time-step. Running multiple iterations
of the microscopic model enables us to capture the
stochasticity resulting from our control system.

Our performance metric considers the degree of con-
vergence to Ȳ, expressed by the fraction of misplaced
traits

µ(Y) = ‖(Y− Ȳ)‖1
‖Y‖1

. (29)

We say that one system converges faster than another
if it takes less time for µ(Y) to decrease to some
relative error µthresh, such as µthresh = 5%. Similar
performance metrics have been proposed in [8–10].
We will consider three optimization methods, two

of which stem from this paper, and one of which stems
from [8]:
Fixed-NC — We consider the time-constant, non-

convex optimization problem posed in Eq. 26, with
α = 1, β = 5, and ν = 2, producing a fixed K(s)F

for each species. These values were not tuned in
any way to improve performance.

Adaptive-NC — We consider the time-continuous
optimization problem in Eq. 27, with α = 1, β = 0,
and a sampling time δ = 0.08 s, producing an
adaptive control policy K(s)F(t) for each species.

Fixed-C — We adapt the convex optimization
method presented in [8], denoted in the latter
work as [P1]. This adapted method optimizes the
asymptotic convergence rate (of a system of ho-
mogenous robots) by minimizing the second eigen-
value λ2 of a symmetric matrix S(s), such that
λ2(S(s)) ≥ Re(λ2(K(s))). Since this method re-
quires the knowledge of the desired species distri-
bution X̄, we compute a random instantiation of X̄
that satisfies the desired trait distribution defined

by Eq. 7. We note that in practical applications,
computing a good instantiation of X̄ is not trivial.

For all optimization methods, we set k(s)
ij,max = 2 [s−1].

4.1. Example
To illustrate our method, we consider an example of
N = 3893 robots moving between 10 sites. We sample
a random initial robot distribution X(0), and generate
a random, feasible desired trait distribution Ȳ. The
initial trait distribution is visualized in Fig. 1(a), and
the desired trait distribution is visualized in Fig. 1(b).
The graph is generated randomly according to the
Watts-Strogatz model [23] (with a neighboring node
degree of K = 3, and a rewiring probability of γ = 0.6;
the graph is guaranteed to be connected). The robot
community consists of 3 species and 4 traits, and is
defined as follows:

Q =

 1 0 1 0
1 0 0 1
0 1 0 1


with

X> · 1 = [987, 1490, 1416]> (30)

We solve the system for Ȳ as shown in Fig. 1(b).
We show the evolution of the robot distribution in
Fig. 2(a) and trait distribution in Fig. 2(b)—to avoid
clutter, we plot two selected sites (5 and 6) and one
selected trait (corresponding to the 4th trait, shown as
the top bar in cyan in Fig. 1). The plots demonstrate
a good agreement between the macroscopic model and
the discrete microscopic model.

Fig. 3 shows the ratio of misplaced traits µ(Y) over
time for the initial and desired trait distributions de-
picted in Fig. 1. The macroscopic model demonstrates
that the system successfully achieves a negligible er-
ror. We run 20 iterations of the discrete microscopic
model, once with method Fixed-NC, and once with
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Figure 2. The plot shows the macroscopic model as well as the average over 20 iterations of the microscopic model,
on the graph shown in Fig. 1. We plot values for nodes 5 and 6, which are highlighted in the graph in Fig. 1. (a)
Number of robots of species 1 present at nodes 5 and 6 (b) Number of trait 4 (top bar in cyan in Fig. 1) present at
nodes 5 and 6.

µ
(Y
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Mic. Fixed-NC
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Figure 3. Ratio of misplaced traits over time for the initial and desired trait distributions depicted in Fig. 1. The
simulation was run with 3893 robots and a total of 7786 present traits. The plot shows the macroscopic model as well
as the average over 20 iterations of the microscopic model with and without continuous optimization of transition
rates. The errorbars show the standard deviation.

method Adaptive-NC. Since the adaptive optimiza-
tion method takes the current robot configuration
into account, it produces transition rates that lead
to the desired configuration faster. Also, since it
continuously optimizes toward the desired final trait
distribution, the error remains low. We note that,
due to the stochasticity of the microscopic model, the
error ratio (which counts absolute differences) will
always be larger than 0.

4.2. Comparison of Methods
We compare the three optimization methods, Fixed-
NC,Adaptive-NC, Fixed-C and evaluate their per-
formance with respect to the metric in Eq. 29. We

instantiate 40 random graphs with M = 6 nodes, and
random matrices Q with S = 4 species and U = 4
traits, and generate random desired trait distributions
Ȳ for each graph. The microscopic model is iterated
4 times on each graph instantiation. For the method
Fixed-C, we compute a random robot distribution X̄
that satisfies the desired trait distribution. We mea-
sure the time tµ,thresh at which the system converges
to a value µthresh = 5% of misplaced traits. Since we
sample random matrices Q, we obtain different rank
values. Fig. 4(a) shows results for rank(Q) = 3, i.e.,
a system with redundant species, and Fig. 4(b) shows
results for rank(Q) = 4, i.e., a system with comple-
mentary species (cf. the description in Sec. 2.3).
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Figure 4. The plot shows the convergence time of three optimization methods, evaluated on the microscopic model,
with tµthresh for µthresh = 0.05, for 40 random graphs with M = 6 and random matrices Q with 4 species and 4 traits.
The microscopic model was iterated 4 times over each graph instantiation. (a) rank(Q) = 3 (b) rank(Q) = 4. The
boxplots show the median and the 25th and 75th percentiles.

The plots show that our method Fixed-NC is able
to improve upon Fixed-C: for rank(Q) = 4 by 16%,
and for rank(Q) = 3 by 25%. The stronger improve-
ment in the lower-rank case points towards the impor-
tance of finding a good final robot distribution X̄ when
several are possible that satisfy Eq. 7. The results for
Adaptive-NC confirm the fast convergence towards
desired trait distributions, with a 75% improvement
over Fixed-NC in both cases. It is clear that this
method outperforms the other two methods because
of its ability to take into account the current state
of the robot distribution, and to adapt the transition
rates as a function of this.
Finally, we compute the error obtained by our

method Fixed-NC by comparing the analytical
steady-state distribution of traits (obtained by tak-
ing the eigenvectors that correspond to the zero-
eigenvalues of each rate matrix K(s) and multiply-
ing them by Q) with the desired trait distribution
Ȳ. The median, 90th percentile and maximum error
from the steady-state to the desired trait distribution
are 0.108%, 0.572% and 0.812%, respectively. These
results demonstrate that, despite the fact that our
method is not explicitly optimizing for the steady-
state, it reaches a steady-state error smaller than
system noise (at steady-state).

5. Conclusion
We present a method that distributes a swarm of het-
erogeneous robots among a set of tasks with the goal
of satisfying a desired distribution of robot capabilities
among those tasks. We propose a formulation for het-

erogeneous robot systems through species and traits,
and show how this formulation is used to achieve an
optimal distribution of robots as a function of a de-
sired final trait configuration. To find the optimal
transition rates, we pose an optimization problem,
and develop a solution based on an analytical gradient
that is computationally efficient and capable of pro-
ducing fast convergence times. Building on this result,
we propose a variant real-time optimization method
that enables an online adaptation of transition rates
as a function of the state of the current robot distri-
bution. We validate our approach on random graph
instantiations, and show that our baseline method
outperforms a classical alternative approach. Also, we
show how, when using the variant adaptive optimiza-
tion, a significant gain in convergence speed is made.
We believe that this method is well-suited to appli-
cations that control large-scale teams of robots that
need to converge quickly to desired configurations as
a function of their capabilities, and that need to adapt
to changes in real-time. Future work will include a
more in-depth study of the implications of diversity in
swarm-robotic systems, as well as an implementation
of the proposed framework on real robots.
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