
doi:10.14311/APP.2016.56.0010
Acta Polytechnica 56(1):10–17, 2016 © Czech Technical University in Prague, 2016

available online at http://ojs.cvut.cz/ojs/index.php/ap

MULTI-ROBOT MOTION PLANNING: A MODIFIED RECEDING
HORIZON APPROACH FOR REACHING GOAL STATES

José M. Mendes Filhoa,b, Eric Luceta,∗

a CEA, LIST, Interactive Robotics Laboratory, Gif-sur-Yvette, F-91191, France
b ENSTA Paristech, Unité d’Informatique et d’Ingénierie des Systèmes, 828 bd des Marechaux, 91762, France
∗ corresponding author: eric.lucet@cea.fr

Abstract. This paper proposes the real-time implementation of an algorithm for collision-free motion
planning based on a receding horizon approach, for the navigation of a team of mobile robots in the
presence of obstacles of different shapes. The method is simulated with three robots. The impact of
the parameters is studied with regard to computation time, obstacle avoidance and travel time.

Keywords: multi-robot motion planning; nonholonomic mobile robot; distributed planning; receding
horizon.

1. Introduction
The control of mobile robots is a long-standing subject
of research in the robotics domain. A trending
application of mobile robotic systems is their use in
industrial supply chains for processing orders and
optimizing the storage and distribution of products.
For example, Amazon employs the Kiva mobile
multi-robot system, and the logistic provider IDEA
Group employs the Scallog system for autonomously
processing client orders [1, 2]. Such logistics tasks have
become increasingly complex as sources of uncertainty,
such as human presence, are admitted in the work
environment.

One basic requirement for such mobile multi-robot
systems is the capacity of motion planning, that
is, generating an admissible configuration and input
trajectories connecting two arbitrary states. To solve
the motion planning problem, various constraints
must be taken into account, in particular, the robot’s
kinematic and geometric constraints.
The first constraints derive directly from the

mobile robot architecture implying, in particular,
nonholonomic constraints. Geometric constraints
result from the need to prevent the robot assuming
specific configurations in order to avoid collisions,
communication loss, etc.
We are particularly interested in solving the

problem of planning a trajectory for a team of
nonholonomic mobile robots, in a partially known
environment occupied by static obstacles, being
efficient with respect to the travel time (the amount of
time to go from the initial configuration to the goal).
A great amount of work towards collision-free

motion planning for cooperative multi-robot systems
has been proposed. This work can be split into
centralized and distributed approaches. Centralized
approaches are usually formulated as an optimal
control problem that takes all robots in the team
into account at once. This produces solutions closer

to the optimal one than distributed approaches.
However, the computation time, security vulnerability
and communication requirements can make it
impracticable, specially for a great number of
robots [3].

Distributed methods based in probabilistic [4] and
artificial potential fields [5] approaches, for instance,
are computationally fast. However, they deal with
collision avoidance as a cost function to be minimized.
But rather than having a cost that increases as paths
leading to collision are considered, collision avoidance
should to be considered as hard constraints of the
problem.

Other distributed algorithms are based on receding
horizon approaches. In [6], a brief comparison of
the main distributed receding methods is made, and
the base approach extended in our work is presented.
In this approach each robot optimizes only its own
trajectory at each computation/update horizon. In
order to avoid robot-to-robot collisions and loss of
communication, neighbor robots exchange information
about their intended trajectories before performing
the update. Intended trajectories are computed by
each robot ignoring constraints that take the other
robots into account.
Identified drawbacks of this approach are the

dependence on several parameters for achieving real-
time performance and good solution optimality, the
difficulty to adapt it for handling dynamic obstacles,
the impossibility of bringing the robots to a precise
goal state and the limited geometric representation of
obstacles.
Therefore, in this paper, we propose a motion

planning algorithm that extends the approach
presented in [6]. In this modified algorithm, goal
states can be precisely reached and more complex
forms of obstacles can be handled. Furthermore, we
investigate how the method’s parameters impact a
set of performance criteria. Thus, this distributed
algorithm is able to find collision-free trajectories and

10

http://dx.doi.org/10.14311/APP.2016.56.0010
http://ojs.cvut.cz/ojs/index.php/ap

vol. 56 no. 1/2016 Trajectory Generation Approach

computes the corresponding angular and longitudinal
velocities for a multi-robot system in the presence of
static obstacles perceived by the robots as they evolve
in their environment.
This paper is structured as follows. The second

section states the problem to be resolved, pointing
out the cost function for motion planning and
all constraints that need to be respected by the
computed solution. The third section explains the
algorithm for resolving the motion planning problem
and makes some remarks on how to resolve the
constrained optimization problems associated with the
method. The fourth section is dedicated to the results
found using this method and analyses the specific
performance criteria and how they are impacted by
the algorithm parameters. Finally, in last section we
present our conclusions and perspectives.

2. Problem Statement
2.1. Assumptions
In the development of the approach presented in this
paper, the following assumptions are made:

(1.) The motion of the multi-robot system begins at
the instant tinit and goes until the instant tfinal.

(2.) The team of robots consists of a set R of B
nonholonomic mobile robots.

(3.) A robot (denoted Rb, Rb ∈ R, b ∈ {0, . . . , B−1})
is geometrically represented by a circle of radius ρb

centered at (xb, yb).
(4.) All obstacles in the environment are considered
static. They can be represented by a set O of M
static obstacles.

(5.) An obstacle (denoted Om, Om ∈ O, m ∈
{0, . . . ,M − 1}) is geometrically represented either
as a circle or as a convex polygon. In the case
of a circle its radius is denoted rOm

centered at
(xOm

, yOm
).

(6.) For a given instant tk ∈ [tinit, tfinal], any obstacle
Om is considered detected by the robot Rb whenever
the distance between their geometric centers is less
than or equal to the detection radius db,sen of the
robot Rb. Therefore, this obstacle Om is part of
the set Ob (Ob ⊂ O) of detected obstacles.

(7.) A robot has precise knowledge of the position and
the geometric representation of a detected obstacle,
i.e., obstacle perception issues are neglected.

(8.) A robot can access information about any robot
in the team by using a wireless communication
link. Latency, communication outages and other
problems associated to this communication link are
neglected.

(9.) The dynamic model of the multi-robot systems
is neglected.

(10.) The input (or control) vector of a mobile robot
Rb is bounded.

2.2. Constraints and cost functions
After giving the assumptions in the previous
subsection, we can define the constraints and the
cost function for multi-robot navigation.

(1.) The solution of the motion planning problem
for robot Rb represented by the pair (q∗

b (t), u∗
b(t));

q∗
b (t) ∈ Rn being the solution trajectory for the
robot’s configuration and u∗

b(t) ∈ Rp being the
solution trajectory for the robot’s input – must
satisfy the robot kinematic model equation:

q̇∗
b (t) = f(q∗

b (t), u∗
b(t)), ∀t ∈ [tinit, tfinal]. (1)

where f : Rn × Rp → Rn is the vector-valued
function modeling the robot kinematics.

(2.) The planned initial configuration and initial
input for robot Rb must be equal to the initial
configuration and initial input of Rb:

q∗
b (tinit) = qb,init, (2)
u∗

b(tinit) = ub,init. (3)

(3.) The planned final configuration and the final
input for robot Rb must be equal to the goal
configuration and the goal input for Rb:

q∗
b (tfinal) = qb,goal, (4)
u∗

b(tfinal) = ub,goal. (5)

(4.) Practical limitations of the input impose the
following constraint: ∀t ∈ [tinit, tfinal], ∀i ∈
[1, 2, · · · , p],

|u∗
b,i(t)| ≤ ub,i,max. (6)

(5.) The cost for multi-robot system navigation is
defined as:

L(q(t), u(t)) =
B−1∑
b=0

Lb(qb(t), ub(t), qb,goal, ub,goal)

(7)
where Lb(qb(t), ub(t), qb,goal, ub,goal) is the inte-
grated cost for one robot motion planning [6].

(6.) To ensure avoidance of collisions with obstacles,
the Euclidean distance between a robot and an
obstacle (denoted d(Rb, Om) | Om ∈ Ob, Rb ∈ B)
has to satisfy:

d(Rb, Om) ≥ 0. (8)

For the circle representation of an obstacle, the
distance d(Rb, Om) is defined as:√

(xb − xOm
)2 + (yb − yOm

)2 − ρb − rOm
.

For the convex polygon representation, the
distance was calculated using three different
definitions, according to the Voronoi region [7] Rb

is located.

11

José M. Mendes Filho, Eric Lucet Acta Polytechnica

(7.) In order to prevent inter-robot collisions, the
following constraint must be satisfied: ∀ (Rb, Rc) ∈
R×R, b 6= c, c ∈ Cb,

d(Rb, Rc)− ρb − ρc ≥ 0 (9)

where d(Rb, Rc) =
√

(xb − xc)2 + (yb − yc)2 and Cb

is the set of robots that present a collision risk with
Rb.

(8.) Finally, the need for a communication link
between two robots (Rb, Rc) yields the following
constraint:

d(Rb, Rc)−min(db,com, dc,com) ≤ 0 (10)

with db,com, dc,com the communication link reach of
each robot and Db is the set of robots that present
a communication loss risk with Rb.

3. Distributed motion planning
3.1. Receding horizon approach
Since the environment is perceived progressively by
the robots, and new obstacles may appear as time
passes, planning the whole motion from initial to goal
configurations before the beginning of the motion
is not a satisfying approach. Planning locally and
replanning is more suitable for taking new information
into account as it comes. Besides, the computation
cost of finding a motion plan using the first approach
may be prohibited high if the planning complexity
depends on the distance between the start and goal
configurations.
Therefore, an on-line motion planner is proposed.

In order to implement it, a receding horizon control
approach [8] is used.
Two fundamental concepts of this approach are

the planning horizon Tp and the update/computation
horizon Tc. Tp is the timespan for which a solution
will be computed and Tc is the time horizon during
which a plan is executed while the next plan, for the
next timespan Tp, is being computed. The problem
of producing a motion plan during a Tc time interval
is called here a receding horizon planning problem.
For each receding horizon planning problem, the

following steps are performed:

Step 1. All robots in the team compute an intended
solution trajectory (denoted (q̂b(t), ûb(t))) by solving
a constrained optimization problem. Coupling
constraints (9) and (10), which involve other robots
in the team, are ignored.

Step 2. Robots involved in a potential conflict
(that is, risk of collision or loss of communication)
update their trajectories computed during Step 1 by
solving another constrained optimization problem that
additionally takes into account coupling constraints
(9) and (10). This is done by using the other robots’
intended trajectories computed in the previous step

as an estimate of the final trajectories of those robots.
If a robot is not involved in any conflict, Step 2 is not
executed and its final solution trajectory is identical
to the trajectory estimated in Step 1.

All robots in the team use the same Tp and
Tc for assuring synchronization when exchanging
information about their positions and abouth their
intended trajectories.
For each of these steps and for each robot in

the team, one constrained optimization problem is
resolved. The cost function to be minimized in these
optimization problems is the geodesic distance of a
robot’s current configuration to its goal configuration.
This assures that the robots are driven towards their
goal.

This two step scheme is explained in detail in [6, 9],
where constrained optimization problems associated
to the receding horizon optimization problem are
formulated.
However, constraints related to the goal

configuration and the goal input of the motion
planning problem are neglected in their method.
Constraints (4) and (5) are left out of the planning.
To take them into account, a termination procedure
is proposed in the following that enables the robots
to reach their goal state.

3.2. Motion planning termination
After stopping the receding horizon planning
algorithm, we propose a termination planning that
considers those constraints related to the goal state.
This enables the robots to reach their goal states.

The criterion used to pass from the receding horizon
planning to the termination planning is based on the
distance between the goal and the current position of
the robots. It is defined by the equation 11:

drem ≥ dmin + Tc · vmax (11)

This condition ensures that the termination plan will
be planned for at least a dmin distance from the robot’s
goal position. This minimal distance is assumed to be
sufficient for the robot to reach the goal configuration.
Before solving the termination planning problem

new parameters for representing and computing the
solution are calculated by taking into account the
estimated remaining distance and the typical distance
traveled for a Tp planning horizon. This is done
in order to rescale the configuration intended for a
previous planning horizon not necessarily equal to the
new one. Potentially, this rescaling will decrease the
computation time for the termination planning.
The following pseudo code 1 summarizes the

planning algorithm, and Figure 1 illustrates how plans
would be generated through time by the algorithm.

In the pseudo code, we see the call of a PlanSec
procedure. It corresponds to the resolution of the
receding horizon planning problem as defined in
subsection 3.1.

12

vol. 56 no. 1/2016 Trajectory Generation Approach

PlanLastSec is the procedure for solving the
termination planning problem. This problem is similar
to the receding horizon planning problems.
It also has the two steps already presented for

computing an intended plan and for updating it, if
need be, so that conflicts are avoided.
The difference consists in how the optimization

problems associated to it are defined. The
optimization problem defined in (12) and (13) is the
problem solved at the first step. The optimization
problem associated with the second step is defined (14)
and (15). Besides, in both new constrained optimal
problems, the planning horizon is not a fixed constant
as before, instead it is a part of the solution to be
found.

Then, for generating the intended plan the following
is resolved:

min
q̂b(t),ûb(t),Tf

Lb,f (q̂b(t), ûb(t), qb,goal, ub,goal) (12)

under the following constraints for τk = kTc with k
the number of receding horizon problems solved before
the termination problem:

˙̂qb(t) = f(q̂b(t), ûb(t)), ∀t ∈ [τk, τk + Tf]
q̂b(τk) = q∗

b (τk−1 + Tc)
ûb(τk) = u∗

b(τk−1 + Tc)
q̂b(τk + Tf) = qb,goal

ûb(τk + Tf) = ub,goal

|ûb,i(t)| ≤ ub,i,max, ∀i ∈ [1, p],∀t ∈ (τk, τk + Tf)
d(Rb, Om) ≥ 0, ∀Om ∈ Ob, t ∈ (τk, τk + Tf)

(13)

And for generating the final solution:

min
q∗

b
(t),u∗

b
(t),Tf

Lb,f (q∗
b (t), u∗

b(t), qb,goal, ub,goal) (14)

under the following constraints:

q̇∗
b(t) = f(q∗

b (t), u∗
b(t)), ∀t ∈ [τk, τk + Tf]

q∗
b (τk) = q∗

b (τk−1 + Tc)
u∗

b(τk) = u∗
b(τk−1 + Tc)

q∗
b (τk + Tf) = qb,goal

u∗
b(τk + Tf) = ub,goal

|u∗
b,i(t)| ≤ ub,i,max, ∀i ∈ [1, p],∀t ∈ (τk, τk + Tf)

d(Rb, Om) ≥ 0, ∀Om ∈ Ob,∀t ∈ (τk, τk + Tf)
d(Rb, Rc)− ρb − ρc ≥ 0,

∀Rc ∈ Cb,∀t ∈ (τk, τk + Tf)
d(Rb, Rd)−min(db,com, dd,com) ≥ 0,
∀Rd ∈ Db,∀t ∈ (τk, τk + Tf)

d(q∗
b (t), q̂b(t)) ≤ ξ, ∀t ∈ (τk, τk + Tf)

(15)

A possible definition for the Lb,f cost function
present in the equations above can be simply Tf . The
sets Ob, Cb and Db are functions of τk.

Algorithm 1 Motion planning algorithm
1: procedure Plan
2: qlatest ← qinitial

3: drem ← |Pos(qfinal)−Pos(qlatest)|
4: while drem ≥ dmin + Tc · vmax do
5: InitSolRepresentation(· · ·)
6: qlatest ←PlanSec(· · ·)
7: drem ← |Pos(qfinal)−Pos(qlatest)|
8: end while
9: RescaleRepresentation(· · ·)

10: Tf ←PlanLastSec(· · ·)
11: end procedure

Figure 1. Receding horizon scheme with termination
plan. The timespan Tf represents the duration of the
plan for reaching the goal configuration.

3.3. Strategies for solving the
constrained optimization problems

3.3.1. Flatness property
As explained in [9], all mobile robots consisting of a
solid block in motion can be modeled as a flat system.
This means that a change of variables is possible in a
way that enables states and inputs of the kinematic
model of the mobile robot to be written in terms of
a new variable, called the flat output (z), and its lth
first derivatives. The value of l | l ≤ n depends on the
kinematic model of the mobile robot. Therefore, the
flat output can completely determine the behavior of
the system.
Searching for a solution to our problem in the flat

space rather than in the actual configuration space
of the system presents advantages. It prevents the
need for integrating the differential equations of the
system (constraint 1) and reduces the dimension of the
problem of finding an optimal admissible trajectory.
After finding (optimal) trajectories in the flat space,
it is possible to retrieve the original configuration and
input trajectories.

3.3.2. Parametrization of the flat output by
B-splines

Another important aspect of this approach is the
parametrization of the flat output trajectory. As
done in [10], the use of B-spline functions presents
interesting properties.
• It is possible to specify a level of continuity Ck when
using B-splines without additional constraints.

13

José M. Mendes Filho, Eric Lucet Acta Polytechnica

• A B-spline presents a local support – changes in
the values of the parameters have a local impact on
the resulting curve.

The first property is very well suited for parametrizing
the flat output, since its lth first derivatives will be
needed when computing the actual state of the system
and the input trajectories. The second property is
important when searching for an admissible solution
in the flat space; such parametrization is more
efficient and better-conditioned than, for instance,
a polynomial parametrization [10].
This choice for parameterizing the flat output

introduces a new parameter to be set in the motion
planning algorithm, i.e. the number of non-null knots
intervals (denoted simply Nknots). This parameter
plus the l value determines how many control points
will be used for generating the B-splines.

3.3.3. Optimization solver
The optimization problems associated with finding
the solution q∗(t), u∗(t) are solved using a numerical
optimization solver. For all time dependent
constraints, time sampling is used. This introduces
a new parameter into the algorithm: time sampling
for optimization Ns. Each constraint that must be
satisfied ∀t ∈ (τk, τk + Tf) implies in Ns equations.
The need for a solver that supports nonlinear

equality and inequality constraint restricts the number
of numerical optimization solvers to be considered.
For our initial implementation of the motion

planning algorithm, the SLSQP optimizer stood out as
a good option. Besides being able to handle nonlinear
equality and inequality constraint, its availability in
the minimization module of the open-source scientific
package Scipy [11] facilitates the motion planner
implementation.
However, an error was experienced using this

optimizer, which uses the SLSQP Optimization
subroutine originally implemented by Dieter Kraft [12].
As the cost function value becomes too high (typically
for values greater than 103), the optimization
algorithm finishes with the “Positive directional
derivative for linesearch” error message. This appears
to be a numerical stability problem also experienced
by other users as discussed in [13].

To work around this problem, we proposed a change
in the objective functions of the receding horizon
optimization problems. This change aims to keep
the evaluated cost of the objective function around
a known value when close to the optimal solution,
instead of having a cost depending on the goal
configuration (which can be arbitrarily distant from
the current position).

We simply exchanged the goal position point in the
cost function by a new point computed as follows:

pb,new = pb,goal − pb(τs−1 + Tc)
norm(pb,goal − pb(τs−1 + Tc))αTpvb,max,

where pb,goal and pb(τs−1 + Tc) are the positions
associated with configurations qb,goal and qb(τs−1 +Tc)
respectively, α | α ≥ 1, α ∈ R is a constant for
controlling how far from the current position the new
point is placed, the product Tpvb,max is the maximum
possible distance covered by Rb during a planning
horizon, and s | s ∈ [0, k), s ∈ N is the current receding
horizon problem index.

4. Simulation results
The results and their analysis for the motion planner
presented in the previous sections are presented here.

The trajectory and the velocities shown in Figures 2
and 3 illustrate a motion planning solution found
for a team of three robots. They plan their motion
in an environment where three static obstacles are
present. Each point along the trajectory line of a robot
represents the beginning of a Tc update/computation
horizon.
These figures show the planner generates the

configuration and the input trajectories satisfying the
constraints associated with the goal states.
In particular, in Figure 2, the resulting plan is

computed ignoring coupling constraints (Step 2 is
never performed) and consequently two points of
collision occur. A collision-free solution is presented
in Figure 3. Specially near the regions where collisions
occurred, a change in the trajectory is present from
Figure 2 to Figure 3 to avoid a collision. At the
same time, changes in the (linear) velocities of the
robots across the charts in both figures can be
observed. Finally, the charts at the bottom show
that the collisions were indeed avoided: the inter-
robot distances in Figure 3 are greater than or equal
to zero all along the simulation.
To perform these two previous simulations, a

reasonable number of parameters have to be set.
These parameters can be categorized into two groups:
algorithm related parameters and optimization
solver related parametrs. Among the algorithm
related group, the most important parametrs are:

• the number of samples for time discretization (Ns);
• the number of internal knots for the B-spline curves
(Nknots);

• the planning horizon for the sliding window (Tp);
• the computation horizon (Tc).
• the detection radius of the robot (dsen).

The optimization related parameters depend on the
numeric optimization solver adopted. However, since
most of them are iterative methods, it is common
to have at least a maximum number of iterations
parameter and a stop condition parameter.

This considerable number of parameters makes the
search for a satisfactory set of parameter values a
laborious task.

14

vol. 56 no. 1/2016 Trajectory Generation Approach

1 2 3 4 5 6 7 8
x(m)

0

1

2

3

4

5

y(
m

)

collision

collision

Generated trajectory

R0 R1 R2

0 1 2 3 4 5 6 7 8 9
time(s)

0.6

0.7

0.8

0.9

1.0

1.1

v(
m
/
s)

Linear speed

R0 R1 R2

0 1 2 3 4 5 6 7 8
time (s)

1

0

1

2

3

4

5

In
te

r-
ro

b
o
t

d
is

ta
n
ce

 (
m

)

Inter-robot distances throughout simulation

d(R0 ,R1)−ρ0−ρ1

d(R0 ,R2)−ρ0−ρ2

d(R1 ,R2)−ρ1−ρ2

Figure 2. Motion planning solution without collision
handling.

Therefore, it is important to have a better
understanding of how some performance criteria are
impacted by the changes in algorithm parameters.

4.1. Impact of parameters
Three criteria considered important for validating this
method were studied: the maximum computation
time during the planning over the computation
horizon (MCT/Tc ratio); the obstacle penetration
area (P); the travel time (Ttot). Different parameters
configuration and scenarios where tested in order to
highlight how they influence those criteria.

4.1.1. Maximum computation time over
computation horizon MCT/Tc

The significance of this criterion lies in the need to
assure the real-time property of this algorithm. In a
real implementation of this approach the computation
horizon would always have to be superior to the
maximum time taken to compute a plan.

1 2 3 4 5 6 7 8
x(m)

0

1

2

3

4

5

y(
m

)

Generated trajectory

R0 R1 R2

0 1 2 3 4 5 6 7 8 9
time(s)

0.6

0.7

0.8

0.9

1.0

1.1

v(
m
/s

)

Linear speed

R0 R1 R2

0 1 2 3 4 5 6 7 8
time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

In
te

r-
ro

b
o
t

d
is

ta
n
ce

 (
m

)

Inter-robot distances throughout simulation

d(R0 ,R1)−ρ0−ρ1

d(R0 ,R2)−ρ0−ρ2

d(R1 ,R2)−ρ1−ρ2

Figure 3. Motion planning solution with collision
handling.

Table 1 summarizes one of the scenarios studied for
a single robot. The results obtained from simulations
in this scenario are presented in Figure 4, for various
parameters.
Each dot along the curves corresponds to the

average of MCT/Tc along different Tp’s for a given
value of (Tc/Tp, Ns). The absolute values observed
in the charts depend on the processing speed of
the machine in which the algorithm is run. These
simulations were run on an Intel Xeon CPU 2.53GHz
processor.
Rather than observing the absolute values, it is

interesting to analyze the impact of changes in the
values of the parameters. In particular, an increasing
number of Ns increases MCT/Tc for a given Tc/Tp.
Similarly, an increase in MCT/Tc as the number of
internal knots Nknots increases from charts 4a to 4c is
observed.

Further analyses of the data show that finding the
solution using the SLSPQ method requires O(N3

knots)
and O(Ns) time. Although augmenting Nknots can

15

José M. Mendes Filho, Eric Lucet Acta Polytechnica

0.2 0.3 0.4 0.5 0.6
Tc/Tp

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
C
T
/T

c

Computation cost behavior

Ns =10

Ns =11

Ns =12

Ns =13

Ns =14

Ns =15

(a) . Four internal knots

0.2 0.3 0.4 0.5 0.6
Tc/Tp

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
C
T
/T

c

Computation cost behavior

Ns =10

Ns =11

Ns =12

Ns =13

Ns =14

Ns =15

(b) . Five internal knots

0.2 0.3 0.4 0.5 0.6
Tc/Tp

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
C
T
/
T
c

Computation cost behavior

Ns =10

Ns =11

Ns =12

Ns =13

Ns =14

Ns =15

(c) . Six internal knots

Figure 4. Three obstacles scenario simulations

Table 1. Values for scenario definition

vmax 1.00 m/s
ωmax 5.00 rad/s
qinitial [−0.05 0.00 π/2]T

qfinal [0.10 7.00 π/2]T

uinitial [0.00 0.00]T

ugoal [0.00 0.00]T

O0 [0.55 1.91 0.31]
O1 [−0.08 3.65 0.32]
O2 [0.38 4.65 0.16]

lead to an impractical computation time, typical
Nknots values did not need to exceed 10 in our
simulations, which is a sufficiently small value.
Another parameter having a direct impact on the

MCT/Tc ratio is the detection radius of the robot’s
sensors. As the detection radius of the robot increases,
more obstacles are seen at once which, in turn,
increases the number of constraints in the optimization
problems. The impact of increasing the detection

0 2 4 6 8 10 12 14 16
db,sen(m)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
C
T
/
T
c

MCT/Tc and detection radius relationship

Fitted Curve (−5.29 exp(−0.50 ρd) +3.23)

Original Data

Figure 5. Increasing the detection radius, and impact
on a MT C/Tc ratio

10 12 14 16 18 20 22 24 26
Ns

0
10
20
30
40
50
60
70
80
90

P
(c
m

2
)

Time sampling and obstacle penetration relationship

P(N_s)

Fitted Curve (9395.01 exp(−0.48 Ns) +3.13)

Figure 6. Obstacle penetration decreasing as
sampling increases

radius dsen in the MCT/Tc ratio can be seen in
Figure 5 for a scenario with seven obstacles. The
computation time stops increasing as soon as the
robot sees all obstacles present in the environment.

4.1.2. Obstacle penetration P

Obstacle penetration area P gives a metric for obstacle
avoidance and consequently for the solution quality.
A solution where the planned trajectory does not
pass through an object at any instant of time gives
P = 0. The solution quality decreases with increasing
P . However, since time sampling is performed during
the optimization, P is usually greater than zero. A
way of assuring P = 0 would be to increase the radius
of the obstacles computed by the robot’s perception
system by the maximum distance that the robot can
run within the time span Tp/Ns. However simple, this
approach represents a loss of optimality and is not
considered in this work.
It is relevant then to observe the impact of the

algorithm parameters in the obstacle penetration area.
Tc/Tp ratio, Nknots and dsen impact on this criteria
are only significant for degraded cases, meaning that
around typical values those parameters do not change
P significantly. However, time sampling Ns is a
relevant parameter. Figure 6 shows the penetration
area decreasing as the number of samples increases.

4.1.3. Travel time Ttot
Another complementary metric for characterizing
solution quality is the travel time Ttot. Analyses of
data from several simulations show a tendency that
for a given value of Nknots, Ns and Tc the travel time
decreases as the planning horizon Tp decreases. This
can be explained by the simple fact that for a given

16

vol. 56 no. 1/2016 Trajectory Generation Approach

0 2 4 6 8 10 12 14 16
db,sen(m)

16.0

16.5

17.0

17.5

18.0

18.5

19.0
T
to
t
(s

)
Total execution time and detection radius relationship

Figure 7. Increasing the detection radius, and its
impact on Ttot

Tc, a better solution (in terms of travel time) can be
found if the planning horizon Tp is smaller. Another
relevant observation is that the overall travel time is
shorter for smaller Ns’s. This misleading improvement
does not take into account the fact that the fewer the
samples the greater will be the obstacle penetration
area, as shown previously in Figure 6.

Furthermore, Figure 7 shows travel time invariance
for changes in the detection radius far from degraded
values that are too small. This indicates that
local knowledge of the environment provides enough
information for finding good solutions.

5. Conclusions
We have proposed a distributed motion planner based
on a receding horizon approach, modified to take
into account termination constraints. Near the goal
configuration neighborhood, the receding horizon
approach is finished and a termination planning
problem is solved for bringing the robots to their
precise final state. The problem is stated as a
constrained optimization problem. It minimizes
the time for reaching a goal configuration through
a collision-free trajectory securing communication
between robots. Circle and convex polygon
representation of obstacles is supported. Key
techniques for implementing the motion planner are:
system flatness property, B-spline parametrization of
the flat output and the SLSQP optimizer. Finally,
solutions using this planner for different scenarios
were generated in order to validate the method. The
impact of different parameters on computation time
and on the quality of the solution was analyzed.
Future work will be performed in a physical simulation
environment, where the dynamics is taken into account
as well as models of the sensors and communication
latency.

References
[1] S. Robarts. Autonomous robots are helping to pack
your Amazon orders. http://www.gizmag.com/
amazon-kiva-fulfillment-system/34999/. Accessed:
2015-07-22.

[2] Idea Groupe met en place Scallog pour sa préparation
de commandes.
http://supplychainmagazine.fr/NL/2015/2085/.
Accessed: 2015-07-22.

[3] F. Borrelli, D. Subramanian, a.U. Raghunathan,
L. Biegler. MILP and NLP Techniques for centralized
trajectory planning of multiple unmanned air vehicles.
2006 American Control Conference pp. 5763–5768, 2006.
doi:10.1109/ACC.2006.1657644.

[4] G. Sanchez, J.-C. Latombe. On delaying collision
checking in PRM planning: Application to multi-robot
coordination. The International Journal of Robotics
Research 21(1):5–26, 2002.
doi:10.1177/027836402320556458.

[5] O. Khatib. Real-time obstacle avoidance for
manipulators and mobile robots. In Autonomous Robot
Vehicles, pp. 396–404. Springer Science and Business
Media, 1986. doi:10.1007/978-1-4613-8997-2_29.

[6] M. Defoort, A. Kokosy, T. Floquet, et al. Motion
planning for cooperative unicycle-type mobile robots
with limited sensing ranges: A distributed receding
horizon approach. Robotics and Autonomous Systems
57(11):1094–1106, 2009.
doi:10.1016/j.robot.2009.07.004.

[7] C. Ericson. Real-Time Collision Detection. M038/the
Morgan Kaufmann Ser. in Interactive 3D Technology
Series. Taylor & Francis, 2004.

[8] T. Keviczky, F. Borrelli, G. J. Balas. Decentralized
receding horizon control for large scale dynamically
decoupled systems. Automatica 42(12):2105–2115, 2006.
doi:10.1016/j.automatica.2006.07.008.

[9] M. Defoort. Contributions à la planification et à la
commande pour les robots mobiles coopératifs. Ecole
Centrale de Lille 2007.

[10] M. B. Milam. Real-time optimal trajectory generation
for constrained dynamical systems. Ph.D. thesis,
California Institute of Technology, 2003.

[11] SciPy - Scientific Computing Tools for Python.
http://www.scipy.org/. Accessed: 2015-07-31.

[12] D. Kraft. A software package for sequential quadratic
programming. DLR German Aerospace Center –
Institute for Flight Mechanics, Koln, Germany, 1988.

[13] Runtime errors for large gradients.
http://comments.gmane.org/gmane.science.
analysis.nlopt.general/191. Accessed: 2015-07-27.

17

http://www.gizmag.com/amazon-kiva-fulfillment-system/34999/
http://www.gizmag.com/amazon-kiva-fulfillment-system/34999/
http://supplychainmagazine.fr/NL/2015/2085/
http://dx.doi.org/10.1109/ACC.2006.1657644
http://dx.doi.org/10.1177/027836402320556458
http://dx.doi.org/10.1007/978-1-4613-8997-2_29
http://dx.doi.org/10.1016/j.robot.2009.07.004
http://dx.doi.org/10.1016/j.automatica.2006.07.008
http://www.scipy.org/
http://comments.gmane.org/gmane.science.analysis.nlopt.general/191
http://comments.gmane.org/gmane.science.analysis.nlopt.general/191

	Acta Polytechnica 56(1):10–17, 2016
	1 Introduction
	2 Problem Statement
	2.1 Assumptions
	2.2 Constraints and cost functions

	3 Distributed motion planning
	3.1 Receding horizon approach
	3.2 Motion planning termination
	3.3 Strategies for solving the constrained optimization problems
	3.3.1 Flatness property
	3.3.2 Parametrization of the flat output by B-splines
	3.3.3 Optimization solver

	4 Simulation results
	4.1 Impact of parameters
	4.1.1 Maximum computation time over computation horizon MCT/Tc
	4.1.2 Obstacle penetration P
	4.1.3 Travel time Ttot

	5 Conclusions
	References

