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ABSTRACT. The common trigonometric functions admit generalizations to any higher dimension.
In this paper, we restrict ourselves to three dimensional generalization only, focusing on alternating
case in detail. Many specific properties of this new class of special functions are studied, such as the
orthogonalities, both the continuous one and the discrete one on the 3D lattice of any density, discrete
and continuous Fourier transforms, and others. Rapidly increasing precision of the interpolation with
increasing density of the 3D lattice is shown in an example.
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1. INTRODUCTION

There are many applications of functions which are symmetric or antisymmetric with respect to the symmetry
group S, in mathematics. They appear for example in quantum theory or in theory of integrable systems.
In [I] (anti)symmetric multivariate exponential functions were defined and corresponding Fourier transforms
were given. These functions were examined in detail in dimension two and three in [2]. The natural question
which arises is the restriction of the symmetry to the subgroup A, of S,, consisting of transformations w with
det w = 1. Such functions were examined in [3] for A, involving the general number n, and in [4] in greater
detail concerning the smallest possible n, namely n = 3.

The exponential functions are not the only functions which admit symmetric, antisymmetric and alternating
generalizations to higher dimensions. Their odd and even counterparts, sines and cosines, admit similar
generalizations and fulfil many analogical properties as pure exponentials. Symmetric and antisymmetric case in
general was covered in [5], alternating case was covered in [6]. Two-dimensional symmetric and antisymmetric
generalizations were studied in detail in [7, [§].

The aim of this paper is to study in detail the alternating generalization of sine and cosine functions in
dimension three.

(Anti)symmetric multivariate sine and cosine functions, considered in [5] [7, 8], as well as alternating
multivariate sine and cosine functions, studied in [6] and in this paper, are closely related to symmetric and
antisymmetric orbit functions studied in [9HIT]. Because the definition of the considered functions and orbit
functions are similar (roughly speaking, the exponentials are replaced by sines and cosines), they satisfy the
same or similar properties, namely symmetry relations, reductions to the dominant or semidominant forms,
periodicity etc. The discrete Fourier transforms of sine and cosine functions can be derived with the help of
relations valid for exponential functions.[8] The restriction of the functions to three variables allows us to be
more specific about the details of their properties in the following sections. This is most notable when describing
their discretization and orthogonality relations.

The paper consists of several parts. After the first part, devoted to the definition of three dimensional
alternating sine and cosine functions and their basic properties, come the parts describing their continuous
orthogonality relations, their decomposition rules and the two parts treating four kinds of discrete cosine and
sine transforms.

2. DEFINITION

Three dimensional alternating sine functions siny ,,,): R3 — R have the following explicit form [6]:

sin27rAx  sin27wAy  sin2wAz sin27rAx  sin27wAy  sin2wAz *
sin(a ) (T,y,2) = 5 |sin2rpx sin2rpy  sin2rpz| + 5 |sin2rpxr sin2rpy  sin 2wpz
sin 2rvx  sin27vy  sin2nvz sin 2rvx  sin27vy  sin2nvz

= sin 2w Ax sin 27 py sin 2wvz + sin 2w Az sin 27 pa sin 27y + sin 27 Ay sin 27 pz sin 2nva,
xayvza)‘7M7V€R7 (1)
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where the second determinant with superscipt ™ stands for permanent [12], which is symmetric with respect to
permutations of its rows and columns.
Three dimensional alternating cosine functions cos(y ;.. : R3 — R are defined similarly:

COS2mAxL  cos2mwAYy cos2mAz CoS2mAx  cos2mwAYy Cos2mAz *
coS(x,u) (T, Y, 2) = 5 |cos2mux  cos2muy  cos2mpz| + 5 |cos2muxr  cos2muy  cos2mpz
COS2mvx  COS2mYYy oS 2Tvz COS2mvx  COS2mYYy oS 2Trz

= €08 2mAx cos 2Ty cos 2wz + cos 2w Az oS 2w pux cos 2y + cos 2w Ay cos 2wz cos 2T,
Ty, 2z, \ v ER.(2)

From (1)) we immediately see the (rotational) symmetry of sin(y ,,..) (2, y, z) with respect to cyclic permutations
of variables (z,y, z) and (A, p,v):

Sin()\,,u,u) (:C, Y, Z) = Sin()\,p,v) (Z, z, y) = Sin()x,,u,y) (yu 2, il') = Sin(u,)\,p) (ﬁ, Y, Z) = Sin(,u.,y,)\) (1’, Y, Z)

From we have similar symmetries for Cos( )\’#’V)(a:, Y, 2):

COS(}\,M,V) (.73, Y, Z) = COS(}\,M,V) (Z7 €, y) = COS()\,N,V) (y7 2, J?) = COS(V,)\,/,L) (33, Y, Z) = COS(/,L,ZI7/\) (l‘, Y, Z)

The rotational symmetries above allow us to put any real triple (A, u, ) to the canonical form. For example, we
may restrict ourselves to the functions sin(y , ,y and cos(y .,y with so called semidominant (X, ut,v), that is,
triples (A, p,v) where A > > v or > A > v holds.

The functions sin g ; ) and cos,i,,») with k,1,m € Z have additional symmetries induced by the periodicity
of sine and cosine functions:

Sin(k,l,’m) (‘T +ry+s,z+ t) = Sin(k,l,’m) (LE, Y, Z)a T, 57t € Z7
COS(k,1,m) (T + 7,y + 8,2 + 1) = coS(i1.m) (2, Y, 2), 71,8t €L (3)

Another symmetries of siny ,, ,) and cos(y, ) follow from the well known fact that ordinary sine and cosine
functions of one variable are odd and even functions, respectively. Therefore for all A, u, v and x,y, z we have

Sin()\,p,,l/)(_x, Y, Z) = Sin()\,u,l/) (.’E, Y, Z) = Sin()\,u,v) (.’E, Y, _Z) = - Sin()\,u,l/) (SU, Y, Z)v
COS()\7M7V)(_'Tv Y, Z) = COS(A,M,U) ('Tv -Y, Z) = Cos(x\,,u,z/) (J?, Y, _Z) = COS()\,p,,V) (Ia Y, Z) (4)

There is also duality of sin(y , ) and cosy , . functions,

Sin()\”u,u) (iE, Y, Z) = Sin(m,y,z) (>‘7 Hy V)v COS(A, u,v) (1’7 Y, Z) = COS(z,y,2) (>‘7 Hy V)' (5)

Moreover,
sin(g,i,m)(2,9,2) =0 when k=0orl=0o0rm=0, (6)

therefore we can exclude sin, ;) with at least one index being zero from our considerations.
The relations f@ imply that it is sufficient to restrict to the following families of functions:

sing1m), kl,meN k>I>morl>k>m,
and

COS(k,i,m)s Kslm€Z,k>1>m=>0o0rl>k>m=>0,

and to consider them on the closure of the fundamental domain F(A3T) [6] only. This fundamental domain of
the dual affine group of A3 can be chosen in 3D to be equal to the part of the cube shown in Fig. [T}

F(Agﬂ) ={(z,y,2) € (0, %) x (0, %) x (0, %)|ac >z, y >z}

3. CONTINUOUS ORTHOGONALITY

The alternating trigonometric functions sing,; n,) resp. cos(,;,) are pairwise orthogonal on F (Agff). Let us

denote
3 ifk=I0l=m
G = ’
k. {1 otherwise.
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NI =

0

FIGURE 1. Fundamental domain F(A5T)

Then we have

. . G
_sing (T, y, 2) singe 1 (7,9, 2) dedy dz = kim Ok’ 1t O
F(A3T)
where k, I, m, k', I',m' eN, k>1>morl>k>m, k' >1I'>m orl’ > k' >m', and

lem
Ok ’6mm’)
| kk’ Ol

/ €S t,m) (2, Y, 2) COS(kr 1 miy (2, 2) do dy dz =
F(A3T)

where k,I,m, k' I',m' €{0,1,2,...}, k>1l>morl>k>m, K >I'>m' or ' >k >m'.
Let us have a function f: R3 — R with the following properties: rotational symmetry, that is,

fl@,y,2) = fly, z,2) = f(z,2,9);
periodic, that is
fle+ry+s,z+t)= f(z,y,2) for all r,s,t € Z,
and odd in each variable, that is,

f(—x,y,z) = f(.’L', -Y, Z) = f(xay’ _Z) = _f(xvwa)'

Let f be sufficiently smooth. Then it can be expanded in terms of the alternating sine functions, respectively,
using formulas

f(xaywz) = Z Ckim Sin(k,l,m) (xvya Z)v
Elm>1
k>1>m or I>k>m

Ckim = 64Gl;llrin f(.’L', Y, Z) Sin(k,l,m) ($, Y, z)dmdydz
F

(457

Similarly, any function f : R3 — R with the symmetries

fxy,2) = fy, z,2) = f(2,2,y),
flx4+ry+sz+t)=f(zx,y,2z) foralrs,te,

f(—;my,z) = f<m7 —y,z) = f(xayv _Z) = f(ac,y,z),

and sufficiently smooth can be expanded in terms of the alternating cosine functions. The expansion is done
using the formulas

f(xay7 Z) = Z 5klm COS(k,l,m)(%% Z)a
E,1,m>0
k>1>m or I>k>m

Chim = 64Gl;l1n 5 f(xv Y, Z) COS(k,1,m) (.’IJ, Y, Z)dZUdde
F(AgT)
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FIGURE 2. Finite grid of points in F'(A3T)

4. PRODUCT DECOMPOSITION

The product of two alternating cosines, cos(x ) COS(x .77y (We omit general argument (z,y,2) here) can be
decomposed into the sum of alternating cosines using the following formulas. The decomposition can serve e. g.
for the derivation of recursion relations for the considered functions.

We have

COS(A 1) COS(N /) = 5 (COSO N it ) COSN ot ) COSAN et )
+ COS(A=N, pu4-p! ,v417) + COS(A N, pu—p! ,v—v") + COS(AL N, p—p! ,v+v7) + COS(AL N pu4-p! ,v—v') + COS(AL N, p4-p! ,v417)
+ COS(\—p/,pp—v’ ,v—N") + COS(\—p/, pp—v" N +v) =+ COS(A—p/ ,p4v ,v—N") + COS(N—p/ 41" N +v) + COS( A4/, p—v' ,v—A")
+ COS(A4p/, pp—v' N +v) + COS(A4p/ 40" ,v—N") + COS(A4p/, 41" N +v) + COS(A—v/, u— N v—p') + COS(A—v/ , u— N, +v)
+ COS(A—v/ N pp—p’) T COS(A—p? Nt pu,p+v) T COS(OAfu/ =N w—p') T+ COS(A4v/ = N pp, ' +v) T COS(Afu N pv—p/) T+
COS(>\+V’,>\/+M,M’+V))' (7)

Similarly, the product of two alternating sines, sin(y ) sin( ,,,/) can be decomposed into the sum of alternating
cosines using the following formulas:

S0 ) S 7 0) = 5 (COSA=N pum =) = COS(A= N pap? w) — COSON ! =1
+ COSOA=N,putp/ w4v') = COSOALN u—p! ,v—1') + COS(NFN ,pu—p/ w+17) + COSONFN it p v—v') — COSOALN putp! v +07)
+ COS(A—p/ ,u—v' ,v—X") =~ COS(A—p/ pu—v’ N 4v) — COS(A—p/ utv’ ,v—X') + COS(A—p/ 4" N 4v) = COSOAf ! p—v’ ,v—X")
+ COS(A+u/,pu—v’ N+v) T COSOAt ! v’ ,w—N) = COS(Apu/ ptv’ N 4v) T COS(A—v/ =N w—p’) = COS(A—p’ =N,/ +)
— COS(A—v/ N 4p,v—p') + COS(A—v! N 4p, /' +v) — COS(A4u/ =N v—p') + COS(A4v/ u— N ' +v) + COS(A4v/ N +p,v—p')
_COS(A+V/,>\’+;A,;L’+V)>- (8)

For the sake of completeness, one can decompose also the product sin(y ,,,) coS(xr ,7,,7y- This can be however
easily obtained from the decomposition by substitution cos — sin on the right hand side.

5. DISCRETE COSINE TRANSFORMS

To each of standard discrete cosine transforms, denoted in the literature often as DCT-1, DCT-2, DCT-3 and
DCT-4 [13], there corresponds an alternating three-dimensional discrete cosine transforms. We denote these
corresponding transforms as AMDCT-1, AMDCT-2, AMDCT-3, AMDCT-4.

5.1. AMDCT-1
For given N € N let us define a lattice

FN:{(ﬁ’ﬁ7ﬁ)‘O§T7S7tSN,TZSZtOI‘S>T>t}. 9)
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N fF(Agﬁ)|f_fN|2

0.0486711
0.0391407
0.0096493
0.0029516

W N

TABLE 1. Integral error estimates
Yoo for the approximations in Fig. El

FIGURE 4. Alternating cosines approximations of for N =1,2,3,4.

This lattice is chosen such way that it fulfills the whole space when symmetries and are applied to it.
Evidently, we have a partial freedom which parts of boundary to include in the lattice. The lattice @D contains
%(N?’ +3N? + 5N + 3) points. For example,

P, ={(0,0,0),(3,0,0), (3. 7.0), (3, 1, 1) (3, 3.0, (5. 0,0), (3, 7,0, (

Another example, for N =5, is shown in Fig. 2
The alternating cosines cos(j ;) are pairwise orthogonal on this lattice, namely we have

N[
N
N
~
~—
N|—=
N|—=
o
=
—~
N[
(SIS
=
~—
—~
N|—
N|—
N|—
~—
——

-1 r s t r s t _ 3~ ~ ~
D Grienesi oS m) (35 557 35) COS( 1) (S 20 20) = NP EkE1Em Gtm (e .m) (b 17
0<r,s,t<N,
r>s>t or s>r>t
where
% ifa=0ora=N, . 1 ifa=0o0ra=N,
Ca = . Ca =91 :
1 otherwise, = otherwise,

2

and 0 < kIm<N,k>l>morl>k>m,and 0< k' I'm <N, K>U'>m'orl'! >k’ >m.
Let f be a real function defined on Fly. Then it can be expanded into a sum of alternating cosines,

flz,y,2) = Z Ak,1,m) COS(k,1,m) (T, Y, 2),
0<k.L,m<N,
k>1>m or I>k>m

where the coefficients a1, ) are given by the formula

1 CrCsCy
Ak,L,m) = 73 G § : a f(55 3% 35) COS(kim) (35> 3370 38 )
CkClICm G klm 0<rsi<N rst
rZsEt or s>r>t

As an interpolation example, we take
f(z,y, z) = cos 2wz cos 2wy cos 2wz cos 10(z + y + 2), (10)

and compute four interpolations fy for N = 1,2, 3,4 using alternating cosines. The graph of the function
is shown in Fig. [3| and four approximations in Fig. 4

By visual inspection, approximations fy get closer to f as N increases. This is verified by computing integral
error estimates shown in Table [I1
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5.2. AMDCT-2

Alternating discrete cosine transform of second kind uses a lattice

= r+1/2 s+1/2 t+1/2
FN:{(;N/ , ';N/ , 'gN/)|0§r,s,t§N—l,r252t0r5>r>t}. (11)

This lattice contains %N (N2 + 2) points. For example,

I = {(%7 %7 %)7 (%7 %7 é)v (%7 %7 %)7 (%a %a %)}

The alternating cosines cos ;) are pairwise orthogonal on this lattice, namely we have

-1 r41/2 s41/2 t41/2 r41/2 s+1/2 t41/2
E: GrstCTCSCtCOS(W,m)( ON 2N ' 2N )Cos(kﬂl’,m’)( SN SEN s TBR)
0<r,s,t<N—1,

r>s>t or s>r>t 3~ ~ ~
= N°CkC1CmGrimO(k,1,m), (k' ' ;m")»

where 0 < kI m<N-1,k>I>morl>k>m,and0< K, ', m <N-1L K >U'>m orl' >k >m.

Let f be a real function defined on Fy. Then it can be expanded into a sum of alternating cosines,

f(.’If,y,Z) = E b(k,l,m) COS(k,1,m) (x7yvz>7
0<k,l,m<N-1,
k>1>m or I>k>m

where the coefficients b, ; ) are given by the formula

bik,i,m) = ! Z 67"556tf(r+1/2 s+1/2 t+1/2 r+1/2 s+1/2 t41/2

cos(k,t,m) (58— TGN TN )-
N3CCCG G 2N’2N72N) sty 2 2 2
kEClEMm YT klm 0<r,s,t<N—1, rst

r>s>t or s>r>t

5.3. AMDCT-3

Alternating discrete cosine transform of the third kind uses the lattice

F}v:{(ﬁ,ﬁ7ﬁ)‘0§ns7t§N—l, r252t0r3>r>t}.
Instead of alternating cosines cos(x i,m), shifted cosines cos(xi1/2,141/2,m+1/2) are used. They have similar
properties as normal alternating cosines with integer arguments. For scalar product we obtain

—1 T s t T s t
E G giCresct COS(k+1/2,l+1/2,m+1/2)(W7 3N ﬁ) COS(k/+1/2,l/+1/2,m’+1/2)(Wy 3N ﬁ)
0<r,s,t<N—1,
r>s>t or s>r>t 3~ ~ ~
= N°CkC1CmGrimO(k,1,m), (k' 1! ;m")»

where 0 < kI m<N-1,k>I>morl>k>m, and0< K, I', m <N-1LK>U'>m orl' >k >m.
Let g be a real function defined on F},. Then it can be expanded into a sum of shifted alternating cosines,

g(x,y,2) = E C(k,l,m) COS(k+1/2,l+1/2,m+1/2)(xay7 z),
0<k,l,m<N—1,
k>1>m or I>k>m

where the coefficients ¢ ;) are given by the formula

T S S

1 CrCsCy (77L) (LiL)
5N 2N 2N ) COS(k+1/2,1+1/2,m+1/2)\3N> 3N+ 3N )

N3cpeiemG G
kClCm T kIm 0<r,s t<N—1, rst
r>s>t or s>r>t

Ck,l,m) =

5.4. AMDCT-4

Alternating discrete cosine transform of the fourth kind uses the lattice Fiy and shifted cosines as in the third
case. We have

-1 r+1/2 s+1/2 t+1/2

Y Graercscecoseriyaiej2mi1/2) (TEN s IR ToN)
0<r,s,t<N—-1,
r>s>t or s>r>t

r11/2 s41/2 t41/2\  Ar3a ~ =
X CO8(kr1/2,00+1/2,m+1/2) (Ton s Ton s “an) = N CkCCmGrimO(h Lm), (b 1 ,mr)

where 0 < kI m<N-1L,k>I>morl>k>m,and0< K. ', m <N-LK>U'>m orl' >k >m.
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Let f be a real function defined on Fy. Then it can be expanded into a sum

flz,y,2) = E d(k,1,m) COS(kt1/2,14+1/2,m+1/2) (T, Y, 2),
0<k,lim<N—1,
k>1>m or I>k>m

where the coefficients d(; ;) are given by the formula

1 5r595t ryas
’ +1/2 s+1/2 t+1/2 r41/2 s+1/2 t4+1/2
N3 q E: G SN 558 a8 ) oSk /2,041/2,m+1/2) (Fon > S5 “an)-
CkClICm G Elm rst
0<r,s,t<N—1,
r>s>t or s>r>t

d(ki,m) =

6. DISCRETE SINE TRANSFORMS

Analogical formulas for discrete sine transforms 1-4 can be derived. To each of standard discrete sine transforms,
denoted in the literature often as DST-1, DST-2, DST-3 and DST-4, there corresponds an alternating three-
dimensional discrete sine transforms. We denote these corresponding transforms as AMDST-1, AMDST-2,
AMDST-3, AMDST-4.

6.1. AMDST-1
For given N € N let us define a lattice

F&S):{(ﬁ7ﬁ7ﬁ)‘1§r,s7t§N—1, r>s>tors>r>t}

This lattice contains §(N® —3N? + 5N — 3) points. For example,

S
BV = {34568 .65 5.6 5D}

The alternating sines sin ; ,,,) are pairwise orthogonal on this lattice, namely we have

N3
—1 . .
Yo Grasingrm (3 s ai) st m (35 2 o) = (5) Grtm (e 1m), (k1)
1<r,s,t<N—1,
r>s>t or s>r>t
where 1 < k,Im<N-1Lk>I>morl>k>m,and 1<K ' m'<N-1LK>UI'>m'orl' >k >m'.
Let f9) be a real function defined on F ](VS). Then it can be expanded into a sum of alternating sines,

S .
f( )(I,y7Z) = E Q(k,1,m) SU (K 1,m) (I7yaz)7
1<k,L,m<N—1,
k>1>m or I>k>m

where the coefficients agﬁ)l m) are given by the formula

() _ 8 1 (S)(r_ s _t ygi r st
Agm) = N3G, § : G 7 (5% 380 39) sinem) (555 35> 33 )-
™ 1<rst<N—1, 7St
r>s>t or s>r>t
As an interpolation example, we take

S (@, y, 2) = sin 2z sin 2my sin 27z sin 10(z + y + 2), (12)

and compute four interpolations fl(vs) for N = 1,2, 3,4 using alternating sines. Picture of is shown in Fig.
and four approximations in Fig. [f]

By visual inspection, approximations f](vs) get closer to 1} as N increases. This is verified by computing
integral error estimates shown in Table

6.2. AMDST-2
Alternating discrete sine transform of second kind uses the same lattice as AMDCT-2, that is

FP) = Fy, (13)
where Fy is given by .
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S
N fF(AgH) |f(S) - fJ(V)|2

0.0482575
0.0282054
0.0078227
0.0006646

[IENEUCRN N

TABLE 2. Integral error estimates
for the approximations in Fig. @

04
0.0

FIGURE 5. The function li used in interpolation example.

FIGURE 6. The alternating sines approximations of for N =1,2,3,4.

The alternating sines sin ; ,,) are pairwise orthogonal on this lattice, namely we have
-1 rH1/2 s4+1/2 t41/2y . rH1/2 s+1/2 t41/2
E: Grat Sy (55 S8 “oa) S vy (58 SN o)
0<r,s,t<N—-1,
r>s>t or s>r>t (N

3
= 5) CkCLCm G rimO(k,,m), (k' 1 ym?) s

Wherecp:%forp:Nandcp:lotherwiseandl <klm< N, k>1l>morl >k > m, and
1<K U/ m' <N, K>U'>m'orl' >k >m'.
Let f(%) be a real function defined on F ](VS). Then it can be expanded into a sum of alternating sines,

7 S .
f(S) (Z‘, Y, Z) = Z bgk,)l,m) S (k,1,m) (1‘, Y, Z)v
1<k.l,m<N,
k>1>m or I>k>m

where the coefficients b ;) are given by the formula

b(S) 8 1 f(s)(r-u 2 s+1/2 t+1 2)sin (r+1/2 s+1/2 t+1/2)
(k,l,m) — 73 E: 2N ° 2N °» 2N (kilm)\ 2N » 2N 2N J*
N3cpere,, G G
kim o g i<n—1, TSt

r>s>t or s>r>t

6.3. AMDST-3

Alternating discrete sine transform of the third kind uses the lattice
FJ’V(S):{(%,%,%) | 1<7rs5t<N, r232tors>r>t}.

Instead of alternating sines sin g ; ), shifted sines sin(;41/2,141/2,m+1/2) are used. They have similar properties
as normal alternating sines with integer arguments. For scalar product we obtain

—1 . t N o ¢
Z G st Crescy Sln(k+1/2,z+1/2,m+1/2)(ﬁ, ﬁv W) Sln(k/+1/2,l'+1/2,m/+1/2)(ﬁ, Qi, ﬁ)
1<r,s,t<N,
r>s>t or s>r>t N3
= (5) GrimO(k,1,m), (k' 1" ;m") s
Wherecp:%forp:Nandcp:1otherwiseand0§k,l,m§N—1,k212morl>k>m,and

0<KU,m<N-1LKE>U>m"orl >k >m.

163



Agata Bezubik, Severin Posta AcTA POLYTECHNICA

(s

Let ¢ be a real function defined on F ). Then it can be expanded into a sum of shifted alternating sines,

s .
g(s) (z,y,2) = Z Cgkfl,m) Sln(k+1/2,l+1/2,m+1/2)(xa Y, 2),

0<k,l,m<N—1,
k>1>m or I>k>m

where the coefficients cgi)l ) Are given by the formula

NI 8 CrCsCy
(k,l,m) — N3
lem 1<rst<N, Grst
r>s>t or s>r>t

(S)(r st \g; r s _t
97 (35> 35> an ) Si(k+1/2,14+1/2,m+1/2) (35 38 385 )-

6.4. AMDST-4

Alternating discrete sine transform of the fourth kind uses the lattice F](VS) given by and shifted sines as in
the third case. We have

—-1 . r+1/2 s+1/2 t+1/2 . r+1/2 s+1/2 t4+1/2
Y Grasinggjaiiyzmiy (S SR SR singe a1 /2.m12) (Ses T )
0<r,s,t<N—1,
r>s>t or s>r>t N3
= (5) GrimO(k,1,m), (k' 1" ;m") s

where 0 < kI m<N-1,k>I>morl>k>m, and0< K., ', m <N-1LK>U'>m orl' >k >m.
Let f(5) be a real function defined on F J(VS). Then it can be expanded into a sum

; S .
f(s)(xayaz) = Z dEk,)l,m) SUY(k41/2,14+1/2,m+1/2) (xvyaz)v
0<k,l,m<N-—1,
k>1>m or I>k>m

S)
k

where the coefficients dE Lm

) are given by the formula

(5) _ 8 I zirb1/2 s41/2 t+1/2y r+1/2 s+1/2 t+1/2
d(k,l,m) = N3G Z e f( ON ' 2N ° 2N )Sm(k+1/2,l+1/2M+1/2)( ON 2N ° 2N )
klm 0<r,s t<N—1, rst

r>s>t or s>r>t

7. CONCLUSION

We have presented a detailed study of alternating three dimensional trigonometric functions and their properties
including product decomposition, continuous and discrete orthogonality and interpolation problem. Practical
computational aspects of the formalism presented in this paper need further investigation, namely a fast Fourier
transform analog and comparing to the usual discrete Fourier transform in three dimensions.
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