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Abstract. In this paper the formation control of a multi-robots system is investigated. The proposed
control law, based on Lie group theory, is applied to control the formation of a group of unicycle-type
robots. The communication topology is supposed to be a rooted directed acyclic graph and fixed. Some
numerical simulations using Matlab are made to validate our results.
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1. Introduction
The various ways to control and coordinate a group of
mobile robots widely have been studied in recent years.
This has brought a breadth of innovation, providing
considerable attention for the potential applications,
such as flocking systems control, surveillance, search
and rescue, cooperative construction, distributed sen-
sor fusion, etc. When comparing the mission out-
come of a multi-robot system (MRS) to that of a
single robot, it is clear that cooperation among multi-
ple robots can perform complex tasks that it would
otherwise be impossible for a single powerful robot
to accomplish. The fundamental idea behind multi-
robotics is to allow the individuals to interact with
each other to find solutions of complex problems. Each
of them senses the relative positions of his neighbors,
and achieves the desired formation by controlling the
relative positions [1–3]. In formation control, various
control topologies can be adopted, depending on the
specific environment and tasks. Theoretical views of
MRS behavior are divided into centralized and decen-
tralized systems. In a centralized system, a powerful
core unit makes decisions and communicates with
the others. In the decentralized approach, the robots
can communicate and share information with each
other [4]. We will focus on distributed system control
due to its advantages, such as feasibility, accuracy,
robustness, cost, and so on.

Many studies have been devoted to the control and
coordination of multi-agent systems and multi-robot
systems (e.g. [1, 4–9]). Some of these results have
been used to control vehicles (holonomic, nonholo-
nomic mobile robots, etc.). In this paper, our goal
is to control a group of unicycle robots to achieve a
desired formation. Motivated by references [10–14],
we focus on a rigid body with kinematics evolving
on Lie groups. This is based on regarding the set
of rigid body posture as the Lie group SE(2), which
leads to a set of kinematic equations. These equations
are expressed in terms of standard coordinated invari-
ant linear operators on the Lie algebra se(2). This
approach allows a global description of rigid body

motion which does not suffer from singularities. It
provides a geometric description of rigid motion which
greatly simplifies an analysis of the mechanisms [10].
Paper [1] proposed an elegant control law based on Lie
algebra theory for consensus of a multi-agent system.
It has the holonomic constraints, while nonholonomic
constraints are not considered. In [12], Lie algebra
is used to study the path following control of one
mobile robot. In [15], distributed formation control
of multi-nonholonomic robots is studied. However the
the control law is a leader-follower approach, and the
multi-leader case is not considered. In this paper, a
Lie group method is used to control multiple unicycle-
type robots. The communication topology is defined
as a rooted directed acyclic graph (DAG). Due to the
nonholonomic property of this type of robot, a new
local control law is proposed to make the nonlinear
system converge to the desired formation.

The outline of this paper is as follows. In Section 2,
some preliminary results are summarized and the
formation control problem for a group of unicycle-type
robots is stated. In Section 3, a formation control
strategy is proposed and the stability is analyzed.
The simulation and results are given in Section 4.
Concluding remarks are finally provided in Section 5.

2. Preliminary and problem
statement

2.1. Lie groups
Definition 1 [10]. A manifold of dimension of n is a
set M , which is locally homeomorphic to Rn. A Lie
group is a group G which is also a smooth manifold
and for which the group operations (g, h) 7→ gh and
g 7→ g−1 are smooth. Left action of G on itself Lg :
G→ G is defined by Lg(h) = gh, and right action is
defined the same way. Adjoint action Adg : G→ G is
Adg(h) = ghg−1.

Here are two examples, the special orthogonal group
SO(n) = {R ∈ GL(n,R) : RRT = I, detR = +1} and
the special Euclidean group SE(n) = {(p,R) : p ∈
Rn, R ∈ SO(n)} = Rn × SO(n).
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2.2. Lie algebra associated
with a Lie group

A Lie algebra g over R is a real vector space g together
with a bilinear operator [, ]: g× g (called the bracket)
such that for all x, y, z ∈ g, we have:
• Anti-commutativity: [x, y] = −[y, x];
• Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.
A Lie algebra g is said to be commutative (or

abelian) if [x, y] = 0 for all x, y ∈ g. We can define
adAB = [A,B] = AB − BA where A,B ∈ gl(n,R),
which is the vector space of all n × n real matri-
ces, gl(n,R) forms a Lie algebra. Clearly, we have
[x, x] = 0. The Lie algebra of SO(2), denoted by so(2),
may be identified with a 2× 2 skew-symmetric matrix

of the form ω̂ =
[

0 −ω
ω 0

]
with the bracket structure

[ω̂1, ω̂2] = ω̂1ω̂2−ω̂2ω̂1, where ω̂1, ω̂2 ∈ so(2). The Lie
algebra of SE(2), denoted by se(2), can be identified

with a 3 × 3 matrix of the form ξ̂ =
[
ω̂ v
0 0

]
, where

ω ∈ R, v ∈ R2, with the bracket [ξ̂1, ξ̂2] = ξ̂1ξ̂2 − ξ̂2ξ̂1.
The exponential map: exp : TeG → G is a local

diffeomorphism from the neighborhood of zero in g
onto the neighborhood of e in G. The mapping t→
exp(tξ̂) is the unique one-parameter subgroup R→ G

with tangent vector ξ̂ at time 0. For ω̂ ∈ so(2) and
ξ̂ = (ω̂, v) ∈ se(2), we have

exp ω̂t =
[
cosωt − sinωt
sinωt cosωt

]
, (1)

exp ξ̂t =
[
exp ω̂t A(ω)v

0 1

]
, (2)

where

A(ω) = 1
ω

[
sinωt −(1− cosωt)

(1− cosωt) sinωt

]
.

2.3. Graph theory
The communication topology among N robots will
be represented by a graph. Let G = (V, E ,A) be a
graph of order N with the finite nonempty set of nodes
V(G) = {v1, . . . , vN}, the set of edges E(G) ⊂ V × V,
and an adjacency matrix A = (aij)N×N . If for all
(vi, vj) ∈ E , (vj , vi) ∈ E as well, the graph is said to
be undirected, otherwise it is called directed. Here,
each node vi in V corresponds to a robot-i, and each
edge (vi, vj) ∈ E in a directed graph corresponds to an
information link from robot-i to robot-j, which means
that robot-j can receive information from robot-i. In
contrast, the pairs of nodes in an undirected graph
are unordered, where an edge (vi, vj) ∈ E denotes that
each robot can communicate with the other one. The
adjacency matrix A of a digraph G is represented as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 ,

where aij is the weight of link (vi, vj) and aii = 0
for any vi ∈ V, aij > 0 if (vi, vj) ∈ E and aij = 0
otherwise. A of a weighted undirected graph is de-
fined by analogy, except that aij = aji,∀i 6= j [16]. A
directed path from node vi to vj is a sequence of edges
(vi, vj1), (vj1, vj2), . . . , (vjl, vj) in a directed graph G
with distinct nodes vjk, k = 1, . . . , l. A directed graph
is called acyclic if it contains no directed cycle. A
rooted graph is a graph in which one vertex is distin-
guished as the root.

2.4. Problem statement
A unicycle-type mobile robot is composed of two in-
dependent actuated wheels on a common axle which
is rigidly linked to the robot chassis. In addition,
there are one or several passive wheels (for example, a
caster, Swedish or spherical wheel) which are not con-
trolled and just serve for sustentation purposes [17].
We study the formation control problem of a group
of such robots and each one is equipped with a local
controller for deciding the velocities. We consider
each robot as a node of a directed graph G, then the
communication topology of a group of N robots could
be expressed by an adjacency matrix A = (aij)N×N ,
where aii = 0 and aij = 1 if (vi, vj) ∈ E or 0 other-
wise. The purpose is to design the strategy of the
control applied to each robot in order that this group
of mobile robots could execute a predefined task of
formation control.

2.5. Kinematic model on a Lie group
In order to describe the kinematic properties of the
unicycle-type robot, we consider a reference point OR
at the mid-distance of the two actuated wheels. Then
we define two frames: FI = {O,X, Y } and FR =
{OR, XR, YR}, as shown in Figure 1. FI = {O,X, Y }
is an arbitrary inertial basis on the plane as the global
reference frame and FR = {OR, XR, YR} is a frame
attached to the mobile robot with its origin located at
OR, and the basis {XR, YR} defines two axes relative
to OR on the robot chassis and is thus the robot’s
local reference frame. The position of the robot in
the global reference is specified by coordinates xI and
yI , and the angular difference between the global and
local reference frames is given by θI . Then the pose
of the robot could be described as an element of the
Lie group SE(2):

g =
[
R p
0 1

]
=

cos θI − sin θI xI
sin θI cos θI yI

0 0 1

 ,
where p = [xI , yI ]T denotes the position of the robot in

the global reference frame, and R =
[
cos θI − sin θI
sin θI cos θI

]
is the rotation matrix of the frame FR relative to frame
FI . Then the motion of a robot could be described
by g(t), which is a curve parameterized by time t in
SE(2).
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Figure 1. Representation of the frames.

Each pure rotational motion of a robot on a plane
can be given by a 2× 2 orthogonal matrix R ∈ SO(2).
Let ω ∈ R be the rotation velocity of the robot’s
chassis and then the exponential map exp : so(2)→
SO(2), ω̂ → exp(ω̂t) which is defined by Equation 1

where ω̂ =
[

0 −ω
ω 0

]
∈ so(2) correspond to the robot

chassis rotation. This map represents the rotation
from the initial (t = 0) configuration of the robot to
its final configuration with the rotation velocity ω.
The rigid motions consist of rotation and transla-

tion. A general motion could also be described by an
exponential map exp : se(2) → SE(2), ξ̂ → exp(ξ̂t)

defined in Equation 2, where ξ̂ =
[
ω̂ v
0 0

]
∈ se(2) rep-

resents the velocities of movement, and v = −ω̂p+ ṗ =[
ωyI + ẋI
−ωxI + ẏI

]
where (xI , yI) is the position of the

robot and v represents the velocity of a (possibly
imaginary) point on the rigid body which is moving
through the origin of the world frame. exp(ξ̂t) is a
mapping from the initial configuration of the robot
to its final configuration. That is, if we suppose that
the initial configuration of the robot is g(0), then the
final configuration is given by

g(t) = eξ̂tg(0). (3)

The kinematic model of the unicycle-type robot is
given by 

ẋI = u cos θI ,
ẏI = u sin θI ,
θ̇I = ω,

where u characterizes the robot’s longitudinal velocity.
The variables u and ω are related to the angular
velocity of the actuated wheels via the one-to-one
transformation:[

u
ω

]
=
[
rw/2 rw/2
rw/L −rw/L

] [
ω1
ω2

]
(4)

where rw is the wheels’ radius, L is the distance be-
tween the two actuated wheels, and ω1 and ω2 are
respectively the angular velocity of the right wheel
and the left wheel.
We differentiate the matrix given in Equation 3,

and obtain the kinematic model of a unicycle-type
robot on the Lie group:

ġ(t) = ξ̂g(t) (5)

where ξ̂ is the control input matrix given by

ξ̂ =

0 −ω ωyI + u cos θI
ω 0 −ωxI + u sin θI
0 0 0

 . (6)

This is the kinematic model on the Lie group for a
unicycle-type robot. For one robot with a certain pose
(xI , yI , θI), a control vector (u, ω) results in a unique
control input matrix ξ̂ to update the robot’s motion.

3. Formation control law
on SE(2)

3.1. Controller design
We consider N unicycle-type mobile robots, and use
gi ∈ SE(2) and ḡi ∈ SE(2) (i = 1, · · · , N) to denote
respectively the current configuration and the desired
configuration of each robot. In fact, gi is the repre-
sentation of the robot frame FR shown in Figure 1
relative to the spatial frame FI . As introduced in the
previous section, the evolution of system gi can be
expressed by

ġi = ξ̂igi (7)

where ξ̂i ∈ se(2) is the control input matrix. Let gij
be the configuration of the robot-j frame relative to
the robot-i frame, then we have

gj = gigij . (8)

Thus gij = g−1
i gj . We can use ḡij to represent the

desired configuration of the robot-j frame in the robot-
i frame. Then the robots achieve a desired formation
if their configurations satisfy the following equation
for any k = 1, · · · , N, k 6= i

lim
t→∞

g−1
k gi = ḡki, i = 1, · · · , N. (9)

ḡki ∈ SE(2) is defined according to the task re-
quirements and is often used to identify the geometric
configuration of the formation. We study the move-
ment of gi relative to gj , so here we can consider
provisionally gj = ḡj , then ḡij could be written as
ḡ−1
i gj . Thus we have

ḡ−1
i gj = ḡ−1

i ḡj = ḡ−1
i (ḡkḡ−1

k )ḡj
= (ḡ−1

k ḡi)−1(ḡ−1
k ḡj) = (ḡki)−1ḡkj

which gives ḡi = gj(ḡkj)−1ḡki. Then for robot-i (in the
local frame gi), the needed transformation of robot-i
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from the current configuration to the desired configu-
ration while considering the current configuration of
robot-j is

g̃i_j = g−1
i gj(ḡkj)−1ḡki. (10)

To simplify the notations, we note g̃ij instead of
g̃i_j . In [1], noting x̃ij = log g̃ij , a control law for
agents, which have holonomic constraints, is proposed
as

ξ̂i = c

ai

N∑
j=1

aij x̃ij , i = 1, · · · , N

where aij is the element in the adjacency matrixA and
ai =

∑N
j=1 aij . However, in our MRS, nonholonomic

constraints are associated with unicycle-type robots,
so we develop a new nonlinear control approach. From
the matrix g̃ij , we could know the position error and
orientation error x̃ij , ỹij , θ̃ij . We suppose that the
relative configuration of ḡi with respect to the robot
frame gi is denoted by ḡii. Then ḡii could be obtained
by the the mean functionM : SE(2)× · · · × SE(2)︸ ︷︷ ︸

N−1

→

SE(2), (g̃i1, · · · , g̃i,i−1, g̃i,i+1, · · · , g̃iN ) 7→ g̃ii. This
function means to get the weighted arithmetic mean
of all the arguments, that is, if we note

g̃ij =

cos θ̃ij − sin θ̃ij x̃ij
sin θ̃ij cos θ̃ij ỹij

0 0 1


j=1,··· ,N,j 6=i

,

then x̃ii, ỹii, θ̃ii are given by:

∆ii = 1
ai

N∑
j=1

aij∆ij , j 6= i, ∆ = x̃, ỹ, θ̃ (11)

where aij is the element of adjacency matrix A and
ai =

∑n
j=1 aij . When x̃ii, ỹii and θ̃ii are obtained, g̃ii

can be rewritten as

g̃ii =

cos θ̃ii − sin θ̃ii x̃ii
sin θ̃ii cos θ̃ii ỹii

0 0 1

 .
We take the inverse of the matrix g̃−1

ii which repre-
sents the relative configuration of gi with respect to
the desired configuration ḡi when the predefined com-
munication topology is considered. Let us consider
Figure 2, where the unknowns are annotated in the
list of symbols after the article.
O′X ′Y ′ is the frame of the desired configuration

of robot i, and (A, θ), related to g̃−1
ii , is the current

pose of robot i in the frame O′X ′Y ′. In this frame,
we assume a circle of radius |r|, denoted by CB , and
then we propose a control law to drive the robot to
the origin with the help of this circle.
The absolute value |r| is always positive, and it is

supposed appropriately according to the initial con-
ditions. r is signed: when the robot is located in the
lower half-plane, r = −|r| and thus the angle α is also

A

θ 

B

O′ X′

Y′

Pr

φ 

l

      

  

P′

B′

O″

β α 

ψ 

d

_

Figure 2. Geometrical relations between the robot
actual configuration and the desired configuration.

negative. The coordinate r is determined according
to the following rules:

r is chosen arbitrarily
without changing sign if |r| ≤ l/2,

r = −y+sgn y
√

4y2+3x2

3 if |r| > l/2,

(12)

where the function “sgn” is defined as:

sgn x =
{

1, x ≥ 0,
−1, x < 0.

We denote β = arcsin sin β̄, then the local control
law is proposed as follows:{

u = − sgn cos β̄λl
ω = u

|r| (β − α)
(13)

where λ is a positive constant. From the proposed
law, we have ui and ωi, then the control input matrix
of robot i is obtained from Equation 6.

3.2. Stability analysis
From the previous section, we know that g̃ii is the
representation of ḡi in frame gi, while its inverse g̃−1

ii

is the representation of gi in frame ḡi. To explain the
convergence of gi to ḡi, we just need to prove that
ḡ−1
ii converges to the origin, which is also the identity
matrix I. To prove this, with the help of the notations
depicted in Figure 2, we will divide the movement of
each robot into three phases.

Phase 1. l ≥ 2|r|, β − α 6= 0.

Lemma 1. If we choose a convenient r which satisfies
l ≥ 2|r|, then the angle between the direction of
movement and one tangent of the circle CB converges
to 0, that is δ = |β − α| → 0.

4
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Proof. If r > 0, we have δ = |β − α| =
√

(β − α)2,
then

δ̇ = β − α√
(β − α)2

(β̇ − α̇) = sgn(β − α)(β̇ − α̇).

Because β = arcsin sin β̄ = arcsin sin θ − ϕ, so

β̇ = 1
1− sin2(θ − ϕ)

cos(θ − ϕ) (θ̇ − ϕ̇)

= sgn cos β̄ (θ̇ − ϕ̇).

Consider the coordinate transformation into polar
coordinates, we have ϕ̇ = u sin β/l and l̇ = u cosβ.
We distinguish three cases:

(1.) Case β̄ ∈ [−π2 ,
π
2 ]. In this case, the control law is

u = −λl, ω = −λl(β − α)/r. And

sinα = r

l

⇒ α̇ = − rl̇

l2 cosα = λr cosβ
l cosα = λ cosβ tanα.

Then we have

δ̇ = sgn(β − α)
(
ω − u sin β

l
− λ cosβ tanα

)
= sgn(β − α)λ

[
− l
r

(β − α) + sin β

− cosβ tanα
]
.

Suppose Eβ = − l
r (β − α) + sin β − cosβ tanα. Be-

cause sinα = r/l and l ≥ 2r, so dEβ
dβ < 0. Then

we can say that Eβ is a monotonically decreasing
function about β, and β = α is the unique zero
value point of Eβ . Hence:
• if −π2 ≤ β < α, then Eβ > 0, β − α < 0 and
δ̇ ≤ 0;

• if α ≤ β ≤ π
2 , then Eβ ≤ 0, β − α > 0 and δ̇ ≤ 0.

So δ converges monotonically to 0.
(2.) Case β̄ ∈ (π2 , π]. We have β = π− β̄ ∈ (0, π2 ], and
the control law is u = λl, ω = λl

r (π − β̄ − α).
In this case, we get

δ̇ = sgn(β − α)λ
[
sgn cos β̄

( l
r

(π − β̄ − α)

− sin β̄
)

+ cos β̄ tanα
]
.

Suppose Eβ = sgn cos β̄[ lr (π − β̄ − α) − sin β̄] +
cos β̄ tanα, then

dEβ
dβ

= − l
r

+ cosβ + sin β tanα < 0.

α = β = π − β̄ is the equilibrium point of Eβ , so δ
converge monotonically to 0.

(3.) Case β̄ ∈ [−π,−π2 ). We have β = −π − β̄, we
can get a similar result to case 2.

If r < 0, the same calculus leads to the same results.
Hence we have the conclusion δ = |β − α| → 0.

A θ 

P′

O′ X′

Y′

B

r

φ

 

l

P

Figure 3. Movement in phase 3.

Phase 2. l ≥ 2|r|, δ = β − α = 0.
Because of the regulation of phase 1, in this phase,

the robot will moves towards the origin along the
tangent of circle CB, thus δ = 0 and ω = u(β −
α)/|r| = 0.

Lemma 2. Suppose d = |O′A| and the Lyapunov
function is chosen as V = 1

2d
2 + 1

2θ
2. If the robot

moves towards the origin along the tangent of circle
CB , then V̇ < 0.

Proof. Consider the polar coordinates, we have

ḋ = u cos(β̄ − ψ) sgn x sgn y = cos(β̄ − ψ)sxsy,

where sx is sgn x for short. We find that if u < 0,
then 0 < |β̄| ≤ π

6 ; if u > 0, then 5π
6 ≤ |β̄| < π.

Angle ψ is always positive. If l = 2|r|, ψ is maximal:
ψmax = arccos(7/8) ≈ 0.5054, then no matter what
sign x and y have, we have

ḋ = − sgn cos β̄ λl cos(β̄ − ψsxsy) < 0.

In this phase, δ = 0, so θ̇ = ω = 0. Hence V̇ =
dḋ+ θθ̇ < 0. The lemma is proved.

Phase 3. l = 2|r|.
In this phase, we have always l = 2r and β = α =

π
6 (shown in Figure 3). We use y(x) to represent the
movement of the robot and suppose r ≥ 0. The case
r < 0 could be studied in the same way and the same
conclusion will be obtained. (x, y) is the position of
point A.

Theorem 1. Suppose that one robot, with the veloc-
ity defined by the proposed control law (Equation 13),
moves towards the origin along the tangent of the
circle CB (Figure 3) of which the radius |r| satisfies
l = 2|r| and r is determined by rule (Equation 12),
then both d and θ asymptotically converge to 0.
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Proof. We consider first the case where r > 0. In this
case, l = 2r, (x, y) satisfies the equation x2+(y−r)2 =
4r2. Then we get r = −y+

√
3x2+4y2

3 (the negative
solution is omitted). Using BP⊥PA, we could have

y′ = dy

dx
= −3x+

√
3(4y −

√
3x2 + 4y2)

−3
√

3x+ 4y −
√

3x2 + 4y2
.

This is an homogeneous differential equation. We
suppose y = zx and differentiate it about x:

dy

dx
= z + x

dz

dx
= 3x+

√
3(4y −

√
3x2 + 4y2)

3
√

3x− 4y +
√

3x2 + 4y2

= 3 +
√

3(4z −
√

3 + 4z2)
3
√

3− 4z +
√

3 + 4z2
.

Simplify this result and get

dx

x
= 3

√
3− 4z +

√
3 + 4z2

3 +
√
z + 4z2 − (

√
3 + z)

√
3 + 4z2

dz.

Integrate it and get

ln |x| =
∫ 3

√
3− 4z +

√
3 + 4z2

3 +
√
z + 4z2 − (

√
3 + z)

√
3 + 4z2

dz

=
√

3
z

(
−
√

1 + 4
3z

2 − 1
)
− 1

2 ln(z2 + 1)

+ arctanh z√
3 + 4z2

+ const,

where “const” is a constant and its value is determined
by the initial conditions.
When x > 0, x = l cosϕ, so

ẋ = l̇ cosϕ− lϕ̇ sinϕ = −λl cosβ

− lλ sin β sinϕ = −λl2 (
√

3 + sinϕ) < 0.

l = 0 is the equilibrium point, so x→ 0. This is also
the conclusion for x < 0. So we just need to consider
the right neighborhood of the origin, hence

x = exp
(√

3
z

(
−
√

1 + 4
3z

2 − 1
)
− 1

2 ln(z2 + 1)

+ arctanh z√
3 + 4z2

+ const
)
.

Thus

dx

dz
= x

(−z3 +
√

3z2 +
√

3)
√

3 + 4z2 + 4z2 + 3
z2(z2 + 1)

√
3 + 4z2

.

Solve the equation dx
dz = 0, get z0 = 1 +

√
3. And

when z < z0, dx
dz > 0; when z > z0, dx

dz < 0. So in
the right neighborhood of the origin, dxdz < 0. Hence
if z → 0, then x→ 0, and we have the approximate
relation between x and z:

ln x = −2
√

3
z
− z√

3
− z2

2 +O(z3).

Now z is very close to 0, so the terms of higher orders
could be omitted and we get

ln x = −2
√

3
z

= −2
√

3x
y

.

Thus y = − 2
√

3x
ln x → 0 when x→ 0.

The inclination also converges to 0, because

tan θ = dy

dx
∼ d

dx

(
−2
√

3 x

ln x

)
= −2

√
3
( 1

ln x −
1

ln2 x

)
,

when x → 0, tan θ → 0, then θ → 0. From the
proposed control law, we know that l = 0 is the
equilibrium point, and here it is demonstrated that
when l→ 0, the limit of d and θ are both 0.

In the polar coordinate frame, we have

l̇ = u cos β̄ = − sgn cos β̄ λl cos β̄ = −λl| cos β̄|,

hence l→ 0. With the trigonometric relations, we
could prove that V̇ = dḋ + θθ̇ < 0, and the gain λ
does not affect the stability.

When r < 0, the same reasoning can be made. This
completes the proof.

Suppose D to be a length that has the same order
of the workspace of the system and satisfies l ≤ D for
any t ∈ R and any robot. The two wheel velocities
are

ω1 = 2u+ ωL

2rw
, ω2 = 2u− ωL

2rw
,

and satisfy |ω1| ≤ ωmax, |ω2| ≤ ωmax, then we get the
range of λ:

0 < λ ≤ λmax = rwωmax

D + 2π
3 µRchassis

where Rchassis = L/2 is the radius of the robot chassis,
and µ is a convenient number that satisfies l/|r| ≤ µ
for all t.

3.3. Stability of formation control
Because of the nonholonomic constraints, if there is
a bidirectional path between any two unicycle-type
robots which are equipped with this local control law,
the system will not converge, so we propose a rooted
directed acyclic graph as the communication topology
of the multi-robot system and the theorem below.

Theorem 2. If the communication topology between
N unicycle-type robots is a rooted directed acyclic
graph, then the system (Equation 7) will achieve the
desired formation (Equation 9) under the local control
law (Equation 11, 13). Especially, each robot, in phase
3, converges to the desired formation asymptotically.

Proof. There is no directed circle, so the root node
(robot) will not receive any information and will be
static. Let Km denote the set of the nodes (robots)

6
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1

2 3

4 5 6

Figure 4. Communication topology of simulation.

to which there is a directed path from the root and
this path consists of at most m edges. Then K0 has
only one element – the root robot, denoted by v0.
The configuration of this robot in the fixed frame is
denoted by g0 = ḡ0. Then we use the mathematical
induction method.

(1.) For K1, suppose that there are n1 elements in
K1. One element is denoted by v1i where 1 ≤
i ≤ n1, and the configuration of v1i is denoted by
g1i. Because v1i receives information only from v0,
according to the lemmas above and theorem 1 we
know that limt→∞ g−1

1i g0 = ḡ1i,0.
(2.) For Km, the elements in this set are denoted by
vmi, 1 ≤ i ≤ cm where cm is the cardinality of this
set. vmi receives information from the nodes which
are elements of

⋃
Kn,n≤m−1 and have achieved the

desired configurations. We use j to denote the index
numbers of these robots, that is, vnjj ∈ Knj ⊂⋃
Kn,n≤m−1. Then with the control law, vmi will

converge to the desired configuration relative to
vnjj , so

lim
t→∞

g−1
mig0 = lim

t→∞
g−1
mignjjg

−1
njj
g0

=
(

lim
t→∞

g−1
mi ḡnjj

)
(ḡ−1
njj
ḡ0)

= ḡ−1
(njj),miḡ(njj),0 = ḡmi,0.

The topology graph is a finite graph, so all the
robots will converge to the desired configuration rela-
tive to v0. Then for any vi, vj , we have

lim
t→∞

g−1
i gj = lim

t→∞
g−1
i g0g

−1
0 gj = ḡ−1

0i ḡ0j = ḡij .

Then the formation in Equation 9 is achieved.

4. Simulation
Let us consider a group of 6 unicycle-type robots which
are located in a global frame, and we suppose that each
robot could know its own position and orientation in
the frame via GPS or via a camera which is installed
above the work area. The initial pose of each is p =
(x, y, θ) where (x, y) represents the robot position in

Figure 5. Trajectories of the 6 robots.

the global frame and angle θ indicates the orientation
of the robot. The six initial poses are given by

p1 = (0, 0, 0), p2 = (5, 3, 0),
p3 = (−1, 6, π/6), p4 = (6,−5,−π/2),
p5 = (0,−5, π/3), p3 = (−5,−4,−π/2).

and the desired formation is a regular hexagon with
side length of 2. Let c = 1, the sample time is 0.1 s,
and the maximum angular velocity of the wheels is
ωmax = 5π/s. The communication topology is given
in Figure 4.
Using Matlab, the results are obtained as shown

in Figure 5 and 6. We observe that the six robots
achieve the desired hexagonal formation: robot-1 has
no information source, so it remains static. Other
robots perform the trajectories according to the pos-
ture of their information source robots. Robots 4, 5
and 6 achieve the desired configurations after robots 2
and 3 because of the communication topology shape.
Figure 6 shows the evolution of the angles between
the forward direction of each robot and the X-axis
of the global frame. We see that the six angles turn
to the same value after some regulations of the con-
figurations, which indicates the coordination of the
robots’ orientations. The rotation velocities become 0
at the end.

5. Conclusions
In this paper, we have studied the problem of forma-
tion control for a group of unicycle-type robots using a
Lie group. A local control law based on SE(2) for the
robots is proposed, and the stability is analyzed. The
problem is investigated under a rooted directed acyclic
communication topology for a group of unicycle-type
robots, and the behavior of the system is discussed.
Some simulations of a 6-robot system validate the

7
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Figure 6. Orientation of the 6 robots.

proposed control laws. The communication topology
was supposed fixed. The case of switching topology,
avoiding obstacles and an experiment on real robots
will be studied in our future work.

List of symbols
u robot’s longitudinal velocity [m/s]
ω robot’s chassis instantaneous velocity of rotation

[rad/s]
ω1, ω2 angular velocity of right and left wheel [rad/s]
rω radius of wheel [m]
L distance between the two actuated wheels [m]
p = [xI , yI ]T position of robot in frame FI

gi ∈ SE(2) configuration of local frame attached to robot-
i relative to frame FI

gij configuration of robot-j relative to the local frame
attached to robot-i

ḡij desired configuration of robot-j relative to robot-i
B = (0, r) the centre of a circle of which the radius is |r|
A = [x, y]T position of robot gi in frame O′X ′Y ′

θ orientation of robot gi relative to axis O′X ′

ϕ angle ∠ABX ′ ∈ [−π, π]
l distance between A and B
d distance between A and O′

β̄ angle formed by −→BA and robot’s orientation, ∈ [−π, π]
α angle arcsin(r/l) ∈ [−π/2, π/2]
ψ angle ∠BAO′ ∈ [0, π/2]
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