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Abstract. Yi-Chan Lee et al. claim (cf. Phys. Rev. Lett. 112, 130404 (2014)) that the “recent
extension of quantum theory to non-Hermitian Hamiltonians” (which is widely known under the
nickname of “PT -symmetric quantum theory”) is “likely false as a fundamental theory”. By their
opinion their results “essentially kill any hope of PT -symmetric quantum theory as a fundamental
theory of nature”. In our present text we explain that their toy-model-based considerations are
misleading and that they do not imply any similar conclusions.
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1. Introduction
At present it is still necessary to admit that even
after almost hundred years of the study of relativistic
kinematics and/or of quantum dynamics, the peaceful
coexistence between our intuitive perception of the
underlying classical- and quantum-physics concepts
and principles is often fragile. This fragility dates
back to the publication of the EPR paradox [1] and
it may still be sampled by some freshmost preprints
[2]. In our present paper we intend to reanalyze,
critically, a re-emergence of the conflict which we
noticed in one of the very recent and very well visible
publications [3].
First of all, let us emphasize that the questions

asked in [3] are important, with possible relevance
ranging from the entirely pragmatic applications of
the current quantization principles in information
theory [4] up to pure mathematics [5]. In what follows
we intend to complement the related discussions (to
be sampled, e.g., by [6]) by a deeper analysis and re-
interpretation of some technical aspects (and, mainly,
the non-locality) of the toy model as used in [3].
We may briefly summarize that our analysis will

support the affirmative answer to the question “Could
PT -symmetric quantum models offer a sensible de-
scription of nature?”. This conclusion will be based,
first of all, on the explicit construction of all of the
eligible physical inner products in all of the possible
related and potentially physical, “standard” Hilbert
space H(S). In this manner, the two-parametric fam-
ily of all of the eligible fundamental PT -symmetric
probabilistic interpretations of the system in question
is constructed. In full accord with the textbooks, the
observables become represented by operators which
are not selfadjoint in a “false” Hilbert space but
self-adjoint, as required, in another, non-equivalent,
“standard” Hilbert space. Subsequently, a few im-
plications of our construction will be discussed. In
particular, it will be emphasized that the conclusions

of Yi-Chan Lee et al. [3], which refer to signalling, are
based on an unfortunate use of one of the simplest
but still inadequate, manifestly unphysical Hilbert
spaces.

2. Toy model
In letter [3] Yi-Chan Lee et al. came with a very
interesting proposal of analysis of what happens, dur-
ing the standard quantum entangled-state-mediated
information transmission between Alice and Bob,
when the Alice’s local, spatially separated part H of
the total Hamiltonian (say, of Htot = H

⊗
I where

the identity operator I represents the “Bob’s”, spa-
tially separated component) is chosen in the well
known PT −symmetric two-level toy-model form

H = s

(
i sinα 1

1 −i sinα

)
, s, α ∈ R. (1)

The conclusions of [3] look impressive (see, i.a., the
title “Local PT symmetry violates the no-signaling
principle”). Unfortunately, many of them (like, e.g.,
the very last statement that the “results essentially
kill any hope of PT -symmetric quantum theory as a
fundamental theory of nature”) are based on several
unfortunate misunderstandings. In what follows
we intend to separate the innovative and inspiring
aspects of the idea from some of the conclusions of [3]
which ignore the overall non-locality of the toy model
and which must be classified as strongly misleading
and/or inadequate if not plainly incorrect.

2.1. PT −symmetry
Our task will be simplified by the elementary nature
of the toy-model Hamiltonian H of (1) with property
HPT = PT H called PT −symmetry (for the sake of
clarity let us recall that one may choose here operator
P in the form of Pauli σx matrix while T may be
defined simply as complex conjugation). Secondly,
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our task will be also simplified by the availability of
several published reviews of the formalism (let us call
it PT −symmetric Quantum Mechanics, PTQM) and,
in particular, of its recent history of development (let
us recall its most exhaustive descriptions [5, 7, 8]).
Incidentally, it is extremely unfortunate that the

latter three PTQM summaries remained, obviously,
unknown to or, at least, uncited by, the authors of
letter [3] (for the sake of brevity let us call this letter
“paper I” in what follows). Otherwise, the authors
of paper I would be able to replace their first and
already manifestly incorrect description of the birth
of the formalism (in fact, the first sentence of their
abstract which states that in 1998, “Bender et al. [9]
have developed PT -symmetric quantum theory as
an extension of quantum theory to non-Hermitian
Hamiltonians”) by some more appropriate outline
of the history. Reminding the readers, e.g., that
for the majority of active researchers in the field
(who are meeting, every year, during a dedicated
international conference [10]) the presently accepted
form of the PT -symmetric quantum theory has only
been finalized, roughly speaking, after the publication
of the “last erratum” [11] in 2004.
Naturally, even the year 2004 was not the end

of the history since during 2007, for example, the
description of the so called PT -symmetric brachis-
tochrone [12] moved a bit out of the field and had to
be followed by the thorough (basically, open-system-
related) re-clarification of the concept (cf. [13] and
also, a year later, [14, 15]). During the same years
also the methods of extension of the intrinsically
non-local PTQM formalism to the area of scattering
experiments were developed [16–18].

2.2. Eligible physical inner products
Unfortunately, the authors of paper I have missed the
latter messages. Having restricted their attention
solely to the brachistochronic quantum-evolution
context of the initial publication [12] they remained
unwarned that in this context the role of the genera-
tor H may be twofold. It is being used either in the
unitary quantum-evolution context of [7, 8] (cf. also
the highly relevant, cca fifteen years older review
paper [19]) or in application to the open quantum
systems.
In the latter case one is allowed to speak just

about a non-unitary, truly brachistochronic quantum
evolution within a subspace of a “full” Hilbert space
of states [14, 15]. Naturally, the quantum world of
the above-mentioned Alice cannot belong to such
a category. In other words, “her” Hamiltonian (1)
must necessarily be made self-adjoint. According
to the standard theory (briefly reviewed also in our
compact review [20]), this should be made via a
replacement of the “friendly but false” Hilbert space
H(F ) (chosen, in paper I, as H(F ) ≡ C2 for model
(1)) by another, “standard, sophisticated” Hilbert
space H(S) which only differs from H(F ) in its use of

a different, locality-violating inner product between
its complex two-dimensional column-vector elements
|a〉 = (a1, a2)T and |b〉 = (b1, b2)T .
The usual and “friendly”, F−superscripted inner

product
〈a|b〉 = 〈a|b〉(F ) =

∑
i=1,2

a∗i bi (2)

defines the Hilbert-space structure in the false and
manifestly unphysical, ill-chosen and purely auxiliary
friendlier space H(F ). Thus, what is now required
by the PTQM postulates is an introduction of a
different, non-local, S−superscripted product

〈a|b〉(S) =
∑

i,j=1,2
a∗i Θijbj (3)

containing an ad hoc (i.e., positive and Hermitian
[19]) “Hilbert-space-metric” matrix Θ = Θ(S). Pre-
cisely this enables us to reinterpret our given Hamil-
tonian H with real spectrum as living in a manifestly
physical, new Hilbert space H(S). Naturally, one
requires that such a Hamiltonian generates a unitary
evolution in the correct, physical Hilbert space H(S)

or, in mathematical language, that it becomes self-
adjoint with respect to the upgraded inner product
(3).

3. Physics
3.1. Admissible probabilistic

interpretations of the model
For our two-dimensional matrix model (1) the latter
condition proves equivalent to the set

H†Θ = ΘH (4)

of four linear algebraic equations with general solu-
tion

Θ = a2
(

1 u− i sinα
u+ i sinα 1

)
,

a, u, α ∈ R, |u| < | cosα|. (5)

Any choice of admissible parameter u is easily shown
to keep this metric (as well as its inverse) positive.
Thus, the reason why the parameter α was called “the
non-Hermiticity of H” in [14] is purely conventional,
based on a tacit assumption that one speaks, say,
about an open quantum system. On the contrary,
once we restrict our attention to the world of Alice
(who must live in the physical Hilbert space H(S)),
we must speak about the unitarily evolving quantum
states and about the relevant generator (1) which is,
by construction, Hermitian inside any pre-selected
physical Hilbert space, given by our choice of the
free parameter u.
For this reason the calculation of what, according

to paper I, “Bob will measure using conventional
quantum mechanics” must be again performed in
the physical Hilbert space. In particular, the trace
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formulae as used in paper I are incorrect and must
be complemented by the pre-multiplication of the
bra vectors by the “shared” metric from the right,
〈ψf | → 〈ψf |Θ̃ (in the most elementary scenario one
could simply recall (5) and choose Θ̃ = Θ

⊗
I).

3.2. Observables
Many of the related comments in paper I (like, e.g.,
the statement that “These states [given in the un-
numbered equation after (2)] are not orthogonal to
each other in conventional quantum theory”) must
be also modified accordingly. The point is that the
non-orthogonality of the eigenstates of H in the
manifestly unphysical Hilbert space H(F ) is entirely
irrelevant. In contrast, what remains decisive and
relevant is that, in the words of paper I, “when
α = ±π/2, they become the same state, and this
is the PT symmetry-breaking point”. Indeed, one
easily checks that in such an “out-of-theory” limit
(towards the so called Kato’s exceptional point [21])
the metric (and, hence, the physical Hilbert space)
ceases to exist.
One has to admit that the currently accepted

PHQP terminology is a bit unfriendly towards new-
comers. Strictly, one would have to speak about the
Hermiticity of any two-by-two matrix observable Λ,
i.e., equivalently, about the validity of the necessary
Hermiticity condition in physical space,

Λ†Θ = ΘΛ. (6)

Naturally, this condition can only be tested after
we choose a definite form of the metric (5), i.e., in
our toy model, after we choose the inessential scale
factor a2 > 0 and the essential metric-determining
parameter u in (5).
It is worth adding that in order to minimize possi-

ble confusion the authors of the oldest review paper
[19] recommended that, firstly, whenever one decides
to work with a nontrivial (sometimes also called
“non-Dirac”) metric Θ 6= I, the natural Hermiticity
condition in the “hidden” physical space should be
better called “quasi-Hermiticity”. Secondly, they
also recommended that having a Hamiltonian, there
may still be reasons for our picking up a suitable
candidate Λ for another observable in advance. Then,
equation (6) would acquire a new role of an addi-
tional phenomenological constraint imposed upon
the metric.
Incidentally, in the PTQM context the latter idea

found its extremely successful implementation in
which one requires that the second observable Λ rep-
resents a charge of the quantum system in question.
It is rather amusing to verify that such a specific
requirement (called, sometimes, PCT symmetry [7])
would remove all of the ambiguities from the metric
of (5) simply by fixing the value of u = 0 as well as
of a2 = 1/ cosα.

4. Conclusions
We are now prepared to return to the two key PTQM
assumptions as formulated in paper I. Their main
weakness is that they use the concept of the phys-
ical Hilbert space (i.e., in essence, of the unitarity
of evolution) in a very vague manner. One should
keep in mind that even in the phenomenologically
extremely poor two-dimensional toy models the pre-
dictions and physical content of the theory are very
well understood as given not only by the generator of
evolution H but also by the second observable Λ (say,
charge — for both, naturally, we require that the
spectrum is real). Thus, what can be measured in the
model is the energy and, say, charge. In other words,
the theory does not leave any space for any kind of
coexistence between different “conventional” metrics
and/or between different normalization conventions
(i.e., typically, for the simultaneous use of different
parameters u in (5)). At the same time, in the light
of paper [18] on the PTQM-compatible unitarity of
the scattering, the PTQM theory still leaves space
for a consistent implementation of the important
phenomenological concepts like locality, etc.
The concluding remarks of paper I about a con-

jectured “trichotomy of possible situations” must
be thoroughly reconsidered. Keeping in mind the
necessary separation of alternative PTQM-related
problems and eliminating, first of all, any mixing
between the two well defined categories, viz., of the
quantum models characterized by the unitary and/or
non-unitary evolution. Definitely, the theories of
the PTQM type did not exhaust their potentialities
yet. It is truly impossible to agree with the final
statement of paper I that its “results essentially kill
any hope of PT -symmetric quantum theory as a
fundamental theory of nature”.
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