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Abstract. The paper focuses on modeling free surface flow. The interface is modeled using the
Volume-Of-Fluid method, where the advection of volume fractions is treated by a purely geometrical
method. The novelty of the work lies in the way that it incorporates Binary Space-Partitioning trees
for computing the intersections of polyhedra. Volume-conserving properties and shape-preserving
properties are presented on two benchmarks and on a simulation of the famous broken dam problem.
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1. Introduction
Free surface flows appear in a wide range of indus-
trial applications including molten metal production
in steel processing [1], resin-infusion processes in struc-
tural manufacturing [2], water waves in ship hydro-
dynamics [3], and fresh concrete casting in civil engi-
neering [4]. The development of numerical techniques
for describing the evolution of a free surface can be
tracked back to the early 1980s. A good review of
the early development of this field can be found in [5].
Since that time, a number of different approaches and
methods have been proposed.

The existing methods can be divided into so-called
interface-tracking and interface-capturing methods [6].
In the interface tracking techniques, the underlying dis-
cretization follows the interface in a Lagrangian man-
ner (Lagrangian formulation is typically employed).
Because of the large mesh distortions during the flow,
the mesh needs to be updated as the interface evolves.
The need for frequent re-meshing can sometimes in-
volve an excessive expense, especially in the case of
complex 3D flows. This disadvantage is balanced by
the natural representation of the interface.

Interface-capturing methods are usually formulated
in an Eulerian context, where the computations are
performed on a fixed mesh. The free surface flow
is then realized as the flow of two immiscible fluids,
where one is the fluid of interest (the reference fluid)
and the other represents the ambient air. The inter-
face between the fluids is determined with the help of
a suitably chosen (scalar) interface function, defined
on the underlying mesh. A direct consequence of this
assumption is that the interface is captured within
the resolution of the underlying mesh. Fundamen-
tal examples of interface-capturing methods are the
Level Set method [7–9], the Volume-Of-Fluid (VOF)
method [5, 10], and a combination of these methods
CLSVOF [11]. In Level Set methods, the interface is
typically represented as a zero contour of the interface
signed distance function, which is defined over the

whole computational domain. The interface is then
tracked by solving the transport equation which is of
hyperbolic type, and therefore introduces some compu-
tational difficulties. In Volume-Of-Fluid, the volume
fractions of the representative fluid are tracked. Many
different numerical schemes have been developed in
this area. Most of them are based on Finite Differ-
ence schemes [8], or employ stabilized Finite Elements
(SUPG), see [12, 13]. The work presented here em-
ploys the Volume-Of-Fluid method which, within the
interface capturing methods, belongs to the family of
so-called volume tracking methods [5]. Here, instead
of tracking the interface itself according to the trans-
port equation (as in the Level-Set method), we track
the material volume fraction inside each cell along
the streamlines. The interface is then reconstructed
by projecting these advected volumes onto the origi-
nal mesh. The volume fraction f coincides with the
characteristic function of the domain occupied by the
reference fluid, and can therefore be advected in the
same fashion as in the Level Set methods. In the
case of incompressible fluid, this approach leads to
numerical schemes where it is necessary to compute
the fluxes across the element boundaries [14]. This
approach is sometimes referred to as Eulerian [15].

A different treatment of volume fraction advection
has been proposed by Dukowicz and Baumgardner
in [16]. Their method is based on two simple facts.
The first is that the volume of a reference fluid inside a
sub-domain is equal to its volume fraction integrated
over that sub-domain. The second states that a cer-
tain volume of the reference fluid cannot change in
time (mass conservation). By requiring that an arbi-
trary volume projected along the streamlines at time
tn+1 is equal to the same volume at time tn, they
derived a simple method that can be based purely on
geometrical procedures, i.e. intersections of polygons
and polyhedrons.
Our approach in this work follows Dukowicz and

Baumgardner [16], with later developments by Shah-
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bazi [15]. The novelty lies in incorporating so-called
Binary Space-Partitioning (BSP) trees. BSP trees
were originally developed in connection with 3D com-
puter graphics and are nowadays heavily used in the
gaming industry. An early mention of BSP trees can
be found in [17], and a modern exposition, together
with implementation notes, is contained in [18]. The
main idea behind BSP trees lies in subdividing space
into convex sets by hyper-planes. This subdivision
can be represented by a binary tree structure, which
is used in our work for efficient implementation of
polyhedra intersections. The main advantages of this
formulation include natural geometrical interpretation,
mass conservation, and applicability to structured and
unstructured meshes.
The paper is organized as follows. The first sec-

tion provides an overview of the governing equations
of incompressible immiscible flow, together with dis-
cretization using the finite element method. Then
the VOF-based interface tracking method is presented
in detail, covering the interface reconstruction based
on volume fraction distribution, a mass conserving
interface update using a three step procedure, and
description of the BSP algorithm for truncating ad-
vected volumes of the representative fluid. Finally, the
interface tracking technique is presented on the basis
of several examples that illustrates its capabilities and
its performance.

2. A description of the fluid
This section provides a description of the governing
equations for the flow of two immiscible fluids. As the
problem is by nature fully transient, the Navier-Stokes
equations (NSE) govern the motion of both fluids.
Let us denote Ω ⊂ R3 as a three dimensional domain
which is completely filled with the two immiscible
fluids, occupying the corresponding subsets Ω1(t) and
Ω2(t), where t stresses the time dependence of the two
subsets. The boundary of the whole domain, denoted
as ∂Ω, can be decomposed into two mutually disjoint
parts, ΓD and ΓN , on which the so-called Dirichlet
and Neumann boundary conditions are prescribed,
respectively. The interface between the two fluids is
denoted as Σ(t). Then, for each phase j = 1, 2 in the
domain Ω and on its boundary ∂Ω, and for each time
t ∈ [0, T ], the problem can be formulated as follows,
see [19]

ρj

(∂v
∂t

+ (v ·∇)v − b
)
−∇ · σ = 0 in Ωj ,

∇ · v = 0 in Ωj ,

v = g on ΓD,

σ · n = h on ΓN , (1)
[v]Σ(t) = 0 on Σ,

[n · σ]Σ(t) = 0 on Σ,
vt=0 = v0 in Ωj .

In the equations presented above, we have denoted
as n the normal vectors to both ∂Ω and Σ(t), since

it will be clear from the context which normal vector
we have in mind. The unknowns are velocity field v
and pressure field p. Density ρ, body forces b and
functions g, h and v0 are assumed to be known. The
square brackets [·]Σ(t) in the interface conditions on
Σ(t) denote a jump in the velocity and the normal
stress components. In the case of a fluid with surface
tension, the jump in the normal stress will be propor-
tional to the curvature of the interface Σ(t). Standard
decomposition of stress tensor σ into deviatoric stress
τ and hydrostatic pressure p is used

σ = τ − pδ. (2)

Both fluids are considered as Newtonian fluids, so the
constitutive equations read

τ = µD, (3)

where D denotes the strain rate tensor, which is de-
fined as a symmetric part of the velocity gradient

D = 1
2
(
∇v + (∇v)T

)
(4)

and µ is the dynamic viscosity of the fluid.
The numerical solution of (1) is based on stabi-

lized Finite Elements as introduced in [12]. Provided
that suitable finite dimensional sub-spaces Sh ⊂ S,
Vh ⊂ V and Qh ⊂ Q are defined, the discretized
problem states: find vh ∈ Sh and ph ∈ Qh such that
∀wh ∈ Vh,∀qh ∈ Qh:∫

Ω
ρjw

h ∂v
h

∂t
dx+

∫
Ω
ρjw

h · (vh · ∇)vh dx

+
∫

Ω
∇wh : τ

(
D(vh)

)
dx−

∫
Ω

(∇ ·wh)ph dx

−
∫

Ω
wh · bdx−

∫
ΓN

wh · hds+
∫

Ω
qh(∇ · vh) dx

+
∑

el

∫
Ωe

τSUP G(vh · ∇)wh ·R(vh, ph) dx

+
∑

el

∫
Ωe

τP SP G
1
ρ
∇qh ·R(vh, ph) dx = 0, (5)

where R(vh, ph) denotes the residuum of the linear
momentum balance part of (1). The need for stabi-
lization follows from the use of linear tetrahedrons (i.e.
both velocity and pressure fields are approximated by
linear functions) in order to circumvent issues with
the LBB condition, see [20] for details. Note that the
effective density ρ and also other material parameters
such as viscosity µ, have to be averaged in elements
which are cut by the interface. Averaging is performed
using the original material parameters of both fluids,
which are weighted by the respective volume fractions
of the fluids in the cut element. The averaging is
computed as

µ = fµ1 + (1− f)µ2, (6)
ρ = fρ1 + (1− f)ρ2, (7)
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where f stands for the VOF value at the cut ele-
ment. Additional stabilization terms are defined only
element-wise, and are added as the sum over all ele-
ments Ωe. Parameters τSUP G and τP SP G depend on
the velocity and material parameters. Details on how
they are determined can be found in [12, 13].

3. Evolution of the interface
This section presents in detail the computational rep-
resentation of the interface between the two fluids,
based on the VOF technique. First, we present the
algorithms for interface reconstruction and tracking.
Then there is a description of the method for trun-
cating the polyhedra, based on BSP Trees. It should
be noted that there is only one-way coupling between
solving (5) and interface evolution; the interface advec-
tion is computed with the given velocity field obtained
as a solution to (5).

The position of the interface can be obtained from
the VOF spatial distribution. The interface is located
either between two elements, when one is completely
filled with the reference fluid (VOF = 1) while the
other is fully filled with the second fluid (VOF = 0), or
it passes through the partially filled element. On every
partially filled element, we adopted a piece-wise linear
approximation of the interface by the line segment in
2D and the planar segment in 3D. This is sometimes
referred to as PLIC-VOF [5].
The interface evolution algorithm is required in

order to update the interface position with the flow.
The algorithm presented here is based on the paper
by Shahbazi et al. (see [15]), and consists of three
parts (see also Figure 1):
(1.) The Lagrangian part, in which the original mesh
is projected along trajectories. This is achieved by
advecting the nodal position with the flow. The
time integration is based on forward trajectory
remapping to evolve positions and volumes in time.
To determine the trajectories, the velocity field is
integrated from the original grid to the updated
grid

xL(tt+∆t) = x(t) +
∫ t+∆t

t

v dt, (8)

where xL is the coordinate of the updated (La-
grangian) grid and the x is the original coordinate.
The discretized form of equation (8) employing the
midpoint Runge-Kutta method is

k1 = ∆tv(t,x(t)),
k2 = ∆tv(t+ ∆t,x(t) + 1

2k1),
xt+∆t

L = x(t) + k2.

Time step ∆t is taken to be equal to the time step
used for solving (5). In order to satisfy the CFL
condition, we used adaptive time stepping where
the time step is determined by the element with the
most unfavorable ratio h/||vh||, given the velocity
field previously obtained by solving (5).

(2.) The reconstruction part. In this step the fluid
volumes are reconstructed on the updated grid, as-
suming that the VOF values remain constant during
the Lagrangian phase. The 3D polyhedron repre-
sentation of the volume occupied by the reference
fluid is established on the basis of the spatial VOF
distribution in each cell and its neighborhood. This
includes the calculation of the interface segment nor-
mal, the segment constant, and the material volume
truncation at each Lagrangian cell, as described in
Section 3.1.

(3.) The remapping part. This involves assembling
the polyhedral representation of a reference fluid
material for each cell on the updated (Lagrangian)
grid and redepositing it back on the target grid (i.e.
on the original grid) to obtain updated VOF values.
This phase is performed by a series of 3D polyhedron
intersection procedures between the polyhedron rep-
resenting the reference fluid on the updated grid
and the polyhedra representing the original mesh
cells, yielding the contributions to the updated ref-
erence fluid volumes in particular cells. The details
of this algorithm are given in Section 3.2.

3.1. Interface Reconstruction
As was mentioned above, the interface at each partially
filled cell (so-called interface cell) is represented as a
planar segment, which can be described as

n · x− c = 0, (9)

where n is the unit normal to the planar surface
representing the interface, x is a position vector, and
c is the plane constant. The interface segment normal
in each cell can be determined from the spatial volume
fraction distribution in the neighborhood of the cell.
The segment constant is then determined from the
volume conservation requirement.

The method for determining the normal is based
on an extension to Young’s second method, developed
originally by Rider and Kothe [5]. The idea is to form
a Taylor series expansion of volume fraction fT S

i for
each interface cell i with VOF value fi to each of its
adjacent cell with k with VOF value fk. Then, the
sum of (fT S

i − fk)2 over all cells neighboring cell i∑
k

(
fT S

i (xi) + ∇fT S
i (xi) · (xk − xi)− fk(xk)

)2
(10)

is minimized in the least square sense. The mini-
mization yields the volume fraction gradient ∇fT S

i

corresponding to the interface segment normal ni for
cell i as the solution for the resulting system of normal
equations. All coordinates are evaluated in the mass
center of the cells.

This method guarantees exact reconstruction of the
gradients for a linear function of f . However, even
for the linear interface, the distribution of f through
tessellation is not linear. This method is therefore only
first order accurate. In [15], a second order accurate
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method is proposed for the 2D case. This method is
based on geometric minimization of the differences
between the real volume fractions and the fractions
determined by the given line.
The value of planar segment constant c is deter-

mined from the volume conservation requirement. Its
value is constrained such that the resulting planar
segment (with the fixed normal determined in the
previous step) passes through the cell with a trun-
cation volume equal to the cell material volume V .
The planar segment constant is determined from the
following relation

F (c) = V (c)− V = 0, (11)

where V (c) is the material volume in the cell bounded
by the planar interface segment with constant c and
the portion of the cell boundary surfaces within the
material. The cell material volume V is equal to the
total cell volume multiplied by the volume fraction.
Brent’s method has been used to find zero of the F (c)
function (and to determine the volume conserving
segment constant). This method uses inverse parabola
interpolation, so it is suitable for finding the root of
F (c), as V often varies quadratically with c.

3.2. A BSP tree based approach to
remapping the tetrahedral mesh

The remapping part of the proposed algorithm is of
purely a geometric nature. It involves establishing a
representation of the reference fluid volume in each
cell (in the form of polyhedra) on the updated grid,
projecting it onto the original grid and summing up the
contributions of the truncated volumes (representing
the contributing volume fractions) in each cell. The
pseudo-code is presented in Algorithm 1

The overall procedure requires two basic operations.
The first operation is polyhedron formation based on
knowledge of the interface segment that intersects a
given cell. The second necessary operation is to com-
pute the intersection between two (convex) polyhedra
and to compute the volume of the intersection.

Polyhedron formatting is represented by the Trun-
catePoly procedure in Algorithm 1. Once the tetra-
hedron and the corresponding intersecting plane are
given, truncating the polyhedron is a trivial task, at
least from the theoretical point of view. The only
difficulty lies in the need to draw a correct distinction
for each case of tetrahedron-plane intersection. The
TruncatePoly procedure consists of a loop over the
tetrahedron faces, where each of the faces is cut by the
intersecting plane. Each such plane-face intersection
results in a sub-face that belongs to the newly formed
polyhedron, so that the new sub-face lies on the side
of the interface plane filled with the reference fluid.
Lastly, the closing sub-face of the new polyhedron
(the sub-face coincident with the interface plane) is
formed as a cross-section originating from the union
of the intersecting lines. The FormPoly function

Algorithm 1 Remmaping algorithm
1: procedure doInterfaceRemmaping
2: for el := 1 to nel do
3: if el is cut by interface then
4: n = el.GetPlaneNormal();
5: c = el.GetPlaneConstant();
6: P = el.TruncatePoly(n, c);
7: for all neighbours of el do
8: Q = neighbour.FormPoly();
9: vol = IntersectPoly(P, Q);

10: neighbour.AddVolume(vol);
11: end for
12: end if
13: end for
14: end procedure

forms a polyhedron from the plain (not intersected)
element.

Although an problem evaluation of the intersection
of two arbitrary polyhedrons is theoretically trivial, im-
plementing it presents an interesting problem. In this
work, the intersections are computed with the help of
so-called Binary Space-Partitioning (BSP) trees. The
Original idea of space partitioning with binary trees
comes from a paper by Fuchs, Kedem and Naylor [17]
in 1980. Binary Space-Partitioning is, generally speak-
ing, a method for recursively subdividing a space into
convex sets by hyper-planes. This subdivision of the
space enables polyhedra (in general not necessarily
convex polyhedra) to be represented within the space
by means of a tree data structure known as a BSP
tree, see [18].

The idea is that a given plane n·x−c = 0 partitions
the space (here, we assume that the space is bounded)
into two sub-spaces. According to the plane normal n,
one of the sub-spaces can be called positive (the points
in that subspace lies on the side to which n points) and
the other sub-space can be called negative. Note that
points on the positive subspace satisfy the inequality
n · x− c > 0, and vice versa. Both the positive sub-
spaces and the negative sub-spaces can be further
partitioned by another plane, and so on. By applying
this recursive procedure, one obtains the partitioning
of the original space represented by a binary tree.
Tho nodes of the tree represent the splitting planes.
Hence, a left child of the node corresponds to a positive
subspace created by the plane that the node represents;
a right child corresponds to the negative subspace.
The leaf nodes then represents convex regions obtained
by partitioning. The idea is illustrated in Fig. 2, which
is for clarity represented only in 2D. Splitting lines are
denoted as Pi, convex regions are denoted as Cj . The
sign over each edge of the tree indicates the positive
and negative subspace. The structure of the BSP
tree for partitioning the space can easily be used for
partitioning a polyhedron into convex sub-polyhedra.
This can be done by creating the nodes of the tree
in such a way that each node represents a suitable
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f=0.8

(a) Lagrangian step

f=0.8

(c) Remapping steps(b) Reconstruction step

f=0.8

Figure 1. Illustration of the three phases of the interface update algorithm.
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Figure 2. BSP tree - 2D illustration. The nodes
correspond to splitting lines denoted as P ′s. The leaf
nodes represent final convex sub-regions, denoted as
C′s

splitting plane (that splitting plane may or may not
coincide with actual face of the polyhedron). Other
faces are split at that node by using the corresponding
splitting plane. All the faces that are on the positive
side of that plane are sent to the positive child, and all
the faces on the negative side are sent to the negative
child of the tree. The process is then repeated, so
the binary tree is computed recursively. A face which
accidentally lies fully on the splitting plane is also
stored at the corresponding node, and it is denoted as
a coincident face. The pseudo-code for constructing
a BSP tree, motivated by [18], is shown below. The
key stage of BSP tree construction is classification
of the mutual position between the splitting plane
and the given face, represented by the ClassifyFace
function. The classification is performed with the
help of standard methods used in analytic geometry.
However, due to the round-off errors, it is necessary
to set up appropriate tolerance ε under which we
consider the face and the splitting plane as coincident.
Our experience is that ε depends on the problem that
is to be solved (i.e. element size and time step) and a
typical value is 10−11.

3.2.1. Intersection of polyhedra
The intersection of two polyhedra is theoretically a
trivial task, and can be computed in a straightforward
manner. However, implementation in floating point
arithmetic requires careful treatment of some special
situations. We will go into this matter below. Let
us say that we want to intersect polyhedron P with
polyhedron Q. The idea is to intersect each face of

Algorithm 2 BSP tree construction
1: procedure ConstructBSPtree(FaceList)
2: P = GetPlaneFromFace(FaceList.First())
3: for all Faces in FaceList do
4: type = ClassifyFace(P, Face)
5: if type = crosses then
6: (posFace, negFace) = SplitFace(P,

Face);
7: AddToPosList(posFace);
8: AddToNegList(negFace);
9: else if type = positive then

10: AddToPosList(Face);
11: else if type = negative then
12: AddToNegList(Face);
13: else if type = coincident then
14: AddToCoincident(Face);
15: end if
16: end for
17: ConstructTree(PosList);
18: ConstructTree(NegList);
19: end procedure

Algorithm 3 Intersection of Polyhedra
1: procedure IntersectPoly(P, Q)
2: Q.ConstructBSPTree(Q.FaceList);
3: P.IntersectWith(Q);
4: P.ConstructBSPTree(P.FaceList);
5: Q.IntersectWith(P);
6: end procedure

P with polyhedron Q and to keep all portions of the
intersected faces of P that lies inside Q as a part of
the intersection between P and Q. Then, we proceed
the other way around, i.e. we intersect all faces of
Q with polyhedron P and keep all portions of the
intersected faces of Q lying inside P . If we were test
for intersection of each face of P with each face of
Q, then the resulting algorithm would have quadratic
complexity. However, the use of a BSP tree reduces
the number of comparisons, because a face on one
side of a splitting plane does not need to be tested
with faces on the other side of the splitting plane [18].
The main part of Algorithm 3 is contained in the
IntersectWith function. Basically, this function
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Algorithm 4 Intersection with Polyhedron
1: procedure IntersectWith(P)
2: for all Faces of Q do
3: T = P.GiveBSPTree();
4: (In, Coin) = GetPartition(T, Face);
5: end for
6: end procedure

takes the faces of one polyhedron and sends them in a
loop for further proceeding into the BSP tree for the
other polyhedron, see Algorithm 4. The intersection
of the two polyhedra can be composed of two types of
faces/sub-faces. To the first type belong those faces
of polyhedron P , which lies inside of polyhedron Q
(and symmetrically faces of Q lying inside of P ). To
the second type belong faces of P , which accidentally
coincide with some faces of Q (and vice versa). There-
fore, the output of the IntersectWith function is
composed of the two sets of faces, namely In and
Coin. In contains sub-faces and faces of Q which
lies inside polyhedron P , Coin contains sub-faces and
faces of Q which coincide with some of the faces of
P . The intersection value is computed from these two
sets of faces, as will be described below.
The GetPartition function is the core part of

the IntersectWith procedure. Its purpose is to
partition a given face by the BSP tree into sub-faces
which belong to a positive sub-space, or to a negative
sub-space, or which are coincident with some of the
splitting planes. The face is processed at each node
(representing the splitting plane). According to the
result of the ClassifyFace function, the face is sent
to the positive child or to the negative child for further
processing. If the face is crossed by the splitting plane,
one part of the face lies on the positive side and the
other part of the face lies on the negative side of the
splitting plane. Therefore the part of the face on
the positive side is sent to the positive child, and the
other part is sent to the negative child. The most
complicated case is when the face lies in the splitting
plane, i.e. when the face and the splitting plane are
coincident. In this case, the overlapping portion of
the processed face and the face which served as a basis
for the splitting plane has to be computed. Note that
in the case of convex polyhedra, it is enough to keep
just the overlapping part of the face; the rest is of no
importance. In the case of general polyhedra, the non-
overlapping portions of coincident faces would have to
be processed by the positive or negative child of the
BSP tree. The modification of algorithm proposed
in [18] is a contained in pseudo-code Algorithm 5. In
general, the result of GetPartition procedure is
a representation of a face in form of a union of the
segments (sub-faces) which are contained in positive,
negative or coincident sub-spaces according to the
BSP tree. However, all we need here is to compute
the volume of the polyhedra intersection. Therefore,
only the segments in the negative and coincident sub-

Algorithm 5 Partitioning of a Face
1: procedure GetPartition(Tree, Face)
2: P = GetPlaneFromFace(Tree.CoinFace())
3: type = ClassifyFace(P, Face)
4: if type = crosses then
5: (posFace, negFace) = SplitFace(P, Face);
6: SendToPosChild(posFace);
7: SendToNegChild(negFace);
8: else if type = positive then
9: SendToPosChild(Face);

10: else if type = negative then
11: SendToNegChild(Face);
12: else if type = coincident then
13: overlap = Intersect(CoinFace, Face);
14: StoreIntersection(overlap);
15: end if
16: end procedure

spaces of the BSP tree are needed. They are denoted
as In and Coin, see algorithm 4. Finally, the volume
is computed with the help of the Stokes formula∫

Vp

∇ · F dx =
∫

Sp

F · nds, (12)

which transforms the volume integral of divergence
of vector field F to a surface integral of the normal
component of that field. Vp and Sp denote the volume
and the surface of the polyhedron, respectively. In
order to compute the volume V of the polyhedron
resulting from the intersection, we can proceed as
follows

V =
∫

Vp

1 dx =
∫

Vp

∇ ·
(x

3

)
dx = 1

3

∫
Sp

x · nds

= 1
3

∑
Fi∈{In∪Coin}

∫
Fi

x · ni ds

= 1
3

∑
Fi∈{In∪Coin}

∫
Fi

ci ds = 1
3

∑
Fi∈{In∪Coin}

ciAi,

(13)

where ni and ci are used to denote the normal vector
and the plane constant of face Fi, respectively. The
area of face Fi is denoted as Ai. The volume of the
intersection of the two polyhedra then reduces to an
evaluation of the areas and the plane constants of the
faces contained in the set {In ∪Coin}.
All the procedures were implemented into the

OOFEM code [21, 22]. All the results presented in the
following section were also obtained with OOFEM.

4. Numerical examples
In this section, we present several numerical examples
that illustrate the capability of the proposed BSP
tree-based VOF method. The first example focuses
on the shape-preserving ability of the method, and
also on conservation of volume. The second example
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Figure 3. Cube translation — initial position, t = 0 s.

Figure 4. Cube translation — middle position, t = 5 s.

models the famous experiment performed by Martin
and Moyce in the early 1950s [23].

4.1. Cube propagation through the
unstructured mesh

The example presented here considers the propagation
of a cube through the unstructured mesh in the case of
two basic motions of a fluid: translation and rotation.
In both cases, the velocity field is prescribed in the
whole domain, so we can focus exclusively on the
VOF method itself. The focus here is on the shape-
preserving and volume conservation properties.

4.1.1. Cube translation
The computational domain is a 10 × 10 × 20 pris-
matic block with a 5× 5× 5 cube inside, see Figure 3.
The velocity field is prescribed as a uniform field, i.e.
(1, 0, 0), along the longest side of the block in the
x-direction. For the computation presented here, we
used an unstructured mesh with 27910 nodes and
150909 elements. For shape preservation, Figures 3–5
show the initial position, the middle position and the
final position of the cube; it can be seen that the
shape preservation is very decent. Figures 6 display
slices through the cube by planes with the normal
vectors in x, y and z direction respectively, at times
t = 0 s (initial position), t = 5 s (middle position) and
t = 10 s (final position). Visually, there is no signifi-
cant error in the original shape of the cube. Detailed
information about shape preservation is provided in

Figure 5. Cube translation — end position, t = 10 s.

Figure 6. Cube translation. Slices with the normal
in the x, y, z-direction (columns) and times t = 0, 5,
10 s (rows).

Table 1, which presents a quantitative evaluation of
the VOF values at time t = 0 s and t = 10 s; the
first column shows the relative error of the VOF val-
ues (denoted as H) on each side of the cube. The
mean value of VOF is shown in the middle column,
and the standard deviation is in the third column.
The theoretically exact value Hex = 0.5. It can be
seen that there are no significant changes in the mean
value, and the first column shows an average error of
approximately 12%. There is a slight increment in
the standard deviation, which indicates non-uniform
distribution of VOF values across the planes of the
cubes and increasing fluctuations. Other tests, which
are not reported here, show that these fluctuations
are reduced when finer meshes are used.
The volume conservation is also excellent. The

ratio between the final and initial the volume is only
1.000076, which represents an increase in volume of
less than 0.1‰.
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Cube side |E(H)−Hex|/Hex E(H) σ(H)
Time t0 t10 t0 t10 t0 t10

nx Front 0.122 0.005 0.439 0.503 0.121 0.143
Back 0.127 0.186 0.437 0.407 0.121 0.125

ny Left 0.144 0.108 0.428 0.446 0.118 0.141
Right 0.141 0.121 0.429 0.439 0.121 0.133

nz Top 0.123 0.113 0.439 0.443 0.129 0.146
Bottom 0.132 0.136 0.434 0.432 0.124 0.152

Table 1. Cube propagation — shape preservation evaluation.

Figure 7. Cube rotation. From left to right and from top to bottom there are rotation angles α = 0°, 90°, 180°, 270°,
360°. The bottom-right figure shows the top view of the fully unstructured mesh.

4.1.2. Cube rotation
The second example performed in order to investigate
the shape and volume preserving capabilities deals
with rotation of the cube. The geometry is formed as
a 1× 1× 1 cube inside a cylinder with radius 1 and
height 1.5. The velocity changes linearly from 0 at
the axis of rotation to 1 at the surface of the cylinder.
The computational mesh consists of 24448 nodes and
132971 elements, and it is fully unstructured. The
whole setup is shown in Figure 7, where the cube is
presented in its initial position and then after 90°,
180°, 270° and 360° of rotation. The last figure shows
the top view on the unstructured mesh. The conser-
vation of volume is again excellent. The ratio between
the initial and the final position of the cube (after
360 deg rotation) is 0.9998012 which represents an
error of less than 0.2 ‰ error. Figure 8 shows slices
through the cube by planes with the normal in the x,
y and z direction, again for the initial position and
after 90°, 180°, 270° and 360° rotation, showing shape

preservation. Quantitative results connected to shape
preservation are summarized in Table 2. Similarly as
in the cube translation, the first column shows the rel-
ative error in the VOF values on each side of the cube
for the initial position and after 360° rotation. The
second column shows the mean VOF values, and the
third column shows the standard deviation. Note that
the trend is the same as in cube translation, i.e. the
VOF values do not change significantly on an average,
but, as the cube rotates, the fluctuations around the
mean value increase slightly.

4.2. The Martin and Moyce broken dam
experiment

The final example makes use of the famous Martin and
Moyce experiment with the problem of a broken dam
(also known as the water column collapse problem),
see [23].
The setup of the experiment is illustrated in Fig-

ure 9 in the top-left picture. A rectangular column
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Cube side |E(H)−Hex|/Hex E(H) σ(H)
Angle 0 deg 360 deg 0 deg 360 deg 0 deg 360 deg

nx Top 0.139 0.186 0.431 0.407 0.135 0.171
Bottom 0.135 0.199 0.433 0.400 0.136 0.175

ny Left 0.059 0.077 0.471 0.461 0.100 0.158
Right 0.058 0.061 0.471 0.469 0.101 0.156

nz Front 0.054 0.019 0.473 0.491 0.100 0.181
Back 0.059 0.040 0.470 0.480 0.104 0.187

Table 2. Cube rotation — shape preservation evaluation.

Figure 8. Cube rotation. Slices with the normal
in the x, y, z-direction (column) and rotation angles
α = 0°, 90°, 180°, 270°, 360°. (row).

of water is initially in a state of hydrostatic equi-
librium. After time t0, the water column starts to
collapse due to its gravity by forming an advancing
water wave, as can be seen in the rest of the pictures
of Figure 9. The initial configuration is chosen as
a cubic water block with edge-length a = 0.05175m,
and the bounding box is a prismatic block with dimen-
sions of 0.2286 × 0.05715 × 0.085725m. Frictionless
boundary conditions are assumed on the bottom and

on the vertical walls. The density and the viscosity
of water are taken as 1000 kg/m3 and 1 × 10−3 Pa s.
Ambient air with density equal to 1 kg/m3 and vis-
cosity 1 × 10−5 Pa s is assumed. Four different dis-
cretizations with 2454, 12589, 19111 and 29604 nodes
have been used to verify the objectivity of the de-
scription with respect to mesh size. The position
of the water front and the residual water column
height with respect to time are compared with the
experimental results in Figure 10 and Figure 11, re-
spectively. For convenience, the dimensionless lengths
x∗ = x/a, z∗ = z/a and time t∗ = t

√
g/a are used in

the figures.
It can be seen from Figure 10 that numerical results

converge to the experimental results with increasing
fineness of the mesh. In case of the residual height of
the column in Figure 11, the results are less sensitive
to the mesh and all the meshes that were performed
seem to provide reasonably accurate results.

5. Conclusion
The research presented here has dealt with numerical
simulations of flow with a free surface. The free surface
is handled using the Volume-Of-Fluid method, and the
strategy employed for advancing the interface is based
on purely geometric algorithms. In particular, we have
proposed a new approach for interface reconstruction
and for remapping phases of the advecting algorithms,
which is based on Binary Space-Partitioning. To the
best of our knowledge, this approach has not been
published before.
The presented examples show very good volume-

conserving properties. The shape preserving prop-
erties are also satisfactory. We believe that this is
achieved mainly due to the geometrical nature of the
algorithm, which is implemented in a very effective
manner with the help of the idea of Binary Space-
Partitioning. Although this work is considered as a
proof of concept, and additional efforts will be needed
in order to develop a more complex code, the results
presented here are more than promising. In particu-
lar, more accurate time integration in the Lagrangian
phase of the interface advecting algorithm, and an
analysis of its influence on the volume conserving
properties, would be beneficial.
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Figure 9. Martin and Moyce. From left to right and from top to bottom, the times are t = 0, 0.025, 0.05, 0.075, 0.1
and 0.125 s.
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Figure 10. Martin and Moyce. Dependence of the wave front on time for different meshes and experimental results.
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Figure 11. Martin and Moyce. Dependence of the residual height of the column on time for different meshes and
experimental results.
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