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Abstract. In this article, a method for calculation of air loads of an aircraft with an elastic wing is
presented. The method can predict a redistribution of air loads when the elastic wing deforms. Unlike
the traditional Euler or Navier-Stokes CFD to FEM coupling, the method uses 3D panel method as
a source of aerodynamic data. This makes the calculation feasible on a typical recent workstation.
Due to a short computational time and low hardware demands this method is suitable for both the
preliminary design stage and the load evaluation stage. A case study is presented. The study compares
a glider wing performing a pull maneuver at both rigid and and elastic state. The study indicates a
significant redistribution of air load at the elastic case.
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1. Introduction
1.1. Problem overview
A flight of a modern glider or a High Altitude Long
Endurance (HALE) aircraft is a representative exam-
ple of the fluid-structure interaction problem. These
flying vehicles are a result of a search for the most
aerodynamically effective shape. This leads to a need
for a wing with a large wingspan and an aspect ratio.
Most recent gliders have a wingspan ranging from 18
to 30 meters with an aspect ratio approximately from
30 to 50. A NASA Helios HALE aircraft had a wing
with a wingspan of 75m and aspect ratio of 30 [1].
During a flight of such aircraft, the wing undergoes
large deformations, still in the elastic regime, as shown
on Figure 1.
The Helios HP-03 experimental HALE aircraft

crashed on June 26, 2003 after encountering atmo-
spheric turbulence. The aircraft developed a wing

Figure 1. The Helios aircraft undergoing large defor-
mation [1].

tip displacement of more than 12m and consecutive
pitch oscilations, resulting in structural failure of the
leading edge structure, but leaving the main spar un-
damaged. After the crash of Helios HP03 prototype,
see Figure 2, a demand rose for new methods, which
are capable to compute loads of highly elastic, “mor-
phing” aircrafts [1]. In this article, a method for a
solution of quasi-static load cases of such aircraft is
presented.

Moreover, recent airworthiness regulations explicitly
require to calculate the load redistribution in case “if
deflections under load would significantly change the
distribution of external or internal loads” [2, 3].

1.2. Methods overview
Various methods are traditionally used in order to
capture the change of the aerodynamic load generated
in rigid and elastic state. The simplest option is to
combine a vortex lattice method [4] with a simple
beam finite element model [5] . The most sophisti-
cated approach consists of Navier-Stokes CFD solver

Figure 2. The Helios aircraft after structural failure
during flight [1]
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for aerodynamic input combined with a detailed FEM
structural model with solid elements [6]. The aerody-
namic load is then directly interpolated to the FEM
model. Both of these approaches need to iterate be-
tween the aerodynamic and structural model to obtain
the equilibrium. The simple model with the lifting
line theory provides the fastest solution times, how-
ever, errors may be introduced because of an improper
pitching moment distribution due to the simplified
VLM aerodynamic model. The detailed model with
the Euler or Navier-Stokes CFD solver with a detailed
FEM structural model can provide the most accurate
prediction of the load redistribution. Typically, the
CFD volume mesh has to be updated according to
the results from the FEM solution. This may cause
issues with the deformation of the CFD volume mesh
when the deformation of the wing is large. Recently
an Immersed Boundary Method is used to solve this
kind of fluid-structure interaction [7]

When assuming the costs of the computational time
of the CFD solver and also assuming that up to 10
iterations are usually required to obtain the converged
solution for one particular angle of attack, the use
of the CFD solver is restricted to resend high per-
formance computer clusters, therefore making it very
expensive and not feasible for a typical glider manufac-
turer neither at a design stage nor at a load evaluation
stage.

In this article, a 3D panel method is used, combined
with a geometrically nonlinear finite element method
with beam elements to model the structure of the wing.
The savings of computational time when compared to
the CFD N-S solver and the differences in computed
air loads justify the use of this low fidelity aerodynamic
tool, making it possible to compute large number of
load cases on an average workstation.

1.3. Eligibility
Based on assumptions made in Sections 2.1 and 2.2,
the method presented in this article is suitable for
analysis of quasi-static maneuvers of an aircraft with
elastic wings, operating at a low Mach number (M <
0.3) and sufficiently high Reynolds number (Re >
1000000). This includes the HALE aircraft during
its low altitude flight or a glider performing a pull
maneuver.

2. Methods
2.1. Aerodynamic model
A fluid motion is traditionally described by set of equa-
tions called Navier-Stokes equations [8]. The number
of the exact solution of Navier-Stokes equations is
small. For practical problems, these equations are
solved numerically [9].
Solving the Navier-Stokes equations provides a de-

tailed description of the flow, however the computa-
tional costs are enormous. Therefore some assump-
tions are made to reduce the complexity of the prob-
lem. If the flow is assumed to be steady, inviscid,

Figure 3. Potential flow domain.

incompressible and irrotational, is called a potentital
flow and it can be described by Laplace’s equation [8]
:

∇2Φ = 0 (1)

Where Φ is a scalar function called velocity potential
and velocity −→q at each point can be obtained by its
derivation:

−→q = ∇Φ (2)

An approach from [10] is used to solve the Laplace’s
equation. Assume a cross section of a wing as shown
in Figure 3. The surface S∞ encloses the problem at
infinity, surface S represents a body (wing) and surface
W represents its wake. The surface S+W divides the
domain into two regions: the external region with the
flow field of interest and velocity potential Φ and the
internal region with the fictitious flow and velocity
potential Φi. The surfaces are modeled by a doublet
and source singularities.
Green’s theorem is applied to both the outer and

inner region and velocity potential ΦP is obtained by
combining both expressions. [10] The velocity poten-
tial ΦP gives a velocity potential anywhere in the two
regions. It is expressed in terms of surface integrals in
terms of velocity potential and its normal derivative
over the boundary surface as

ΦP = 1
4π

∫∫
S+W +S∞

(Φ− Φi)−→n · ∇
1
r

dS

− 1
4π

∫∫
S+W +S∞

1
r
−→n · (∇Φ−∇Φi) dS. (3)

Where r is the distance from the point P to the
element dS on the surface, and −→n is a unit normal
vector of the element dS. [10] The first integral in (3)
represents the disturbance potential from a surface
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distribution of doublets with a density of (Φ− Φ∞).
The second integral represents the contribution of
sources with a density of −−→n · (∇Φ−∇Φi).[10]
Next, the internal Dirichlet boundary condition

is introduced. This boundary conditions sets the
Internal flow equal to the Onset flow by

Φi = Φ∞, (4)
ΦP = Φ∞. (5)

Following the procedure from [8, 10, 11], the surface
is discretized into n surface panels and nw panels in
the wake region with a constant distribution of singu-
larities. The (3) is also discretized and the Dirichlet
boundary condition is evaluated at centroid of each
surface panel. These points are called Collocation
points. The result of this procedure is a linear equa-
tion [8]

n∑
k=1

Ckµk +
nw∑
l=1

Clµl +
n∑

k=1
Bkσk = 0, (6)

where Ck, Cl are doublet influence coefficients of body
and wake panels, Bk is the source influence coefficient,
µk is the doublet strength of a body panel, µl is the
doublet strength of a wake panel, σk is the source
strength of a body panel. The σk is set as

σk = −→nk ·
−−→
Q∞, (7)

where −→nk is the panel normal unit vector and −−→Q∞ is
the freestream velocity.

The method described above is known as the “first
order panel method” [8]. It is used as the only source
of aerodynamic data for the fluid-structure interac-
tion. The formulation of the panel method is iden-
tical to well-known and validated codes such as the
VSAERO [10] and PMARC [11].

Boundary layer. The potential flow may give use-
ful results for some applications, however for applica-
tions where viscous effect become more important, the
results obtained under assumption of potential flow
may become inaccurate in terms of over predicted lift
curve slope. A typical example of a flow with a signif-
icant viscous effect is a glider wing at a low Reynolds
number or a flow over a multi-element wing.

The viscous effects can be introduced into the poten-
tial flow model by displacing the actual body surface
by a displacement thickness of the boundary layer [12].
The actual displacing of the body surface is per-

formed by a modification of panels source strength
in (7) to

σk = −→nk ·
−−→
Q∞ + d

ds (ueδ
∗), (8)

where s is a distance on the body, ue is a panel edge
velocity and δ∗ is a displacement thickness computed
by the boundary layer analysis [12].

2.2. Structural model
The structure of the wing is modeled using the FEM
with beam elements only. Each node of the element
has six degrees of freedom. The stiffness properties
are assumed constant for each element. The stiffness
matrix of such element can be found in many FEM
related textbooks [13]. However such elements are
usually derived for isotropic materials. In fact, wings
of modern gliders are made of a carbon fiber rein-
forced composite orthotropic material. A wing made
of such material exhibits coupling between bending
and torsion. This causes issues, when one tries to
reduce stiffness properties of a composite wing into
single stiffness matrix of a beam element. A method
from [14] was adopted to solve this issue.

As the wing undergoes large deformations it is nec-
essary to capture the geometrical non linearity. To
solve this issue a Newton/Rhapson iterative method is
used. The geometrical non-linearity, however, causes
difficulties when calculating elements stiffness matri-
ces — one must determine the derivation of the global
stiffness matrix (tangent stiffness matrix). A method
from [15] was adopted, which provides a numerically
generated tangent stiffness matrix for truss and beam
elements.

2.3. Aero-structural interaction
Work flow. A brief overview of the interaction be-
tween the aerodynamic and internal forces in the wing
structure is shown on Figure 4. The interaction is
done by using a modified Newton-Rhapson method.
This method and steps called the “Compute aerody-
namic forces” and “Compute wing displacement” from
Figure 4 are explained in detail in the paragraph Load
control scheme. Computing the rigid lift curve as a
first step is not necessary, the main reason for this
is to find the zero lift angle of the attack α0, where
the computation of elastic lift curve starts. Starting
from α0 makes the wing almost unloaded and the
Newton-Rhapson method is likely to converge. Also,
the increment of the angle of attack ∆α should be
small enough to assure the convergence, it is usually
from 0.5° to 2°.

Interacting element. The interacting element is
explained in Figure 5. It consists of aerodynamic
panels, but there is only one element in the span-wise
direction and one FEM beam element. Forces and
moments are always integrated from the wingtip to
plane of symmetry, at a point which is also a node
of the finite element model. The load applied at the
FEM node is a sum of forces moments from all panels
belonging to the interacting element as shown on
Figure 5:

−→
f =

n∑
i=1

−→
fi , (9)

−→m =
n∑

i=1

−→
fi × ri, (10)
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Figure 4. Aero-structural interaction — work flow.

where fi is the force on ith panel in the global coor-
dinate system x, y, z, as shown in Figure 5; ri is the
vector between the reference node and control point
of ith panel.
The result of the FEM analysis is a displacement

vector u at each node. Coordinates of aerodynamic
panels are updated at each load step using nodal
translational and rotational displacements, according
to (11). Also, the nodal coordinates are updated as
explained in [15].

PTSnew =
(
Rx(∆φx)Ry(∆φy)Rz(∆φz)

)
PTSold

+ ∆U, (11)

where ∆φx, ∆φy, ∆φz, are rotational increments in
the global coordinate system calculated from the last
step of the Newton-Rhapson iteration, see bellow; ∆U
is the displacement increment; Rx(φx), Ry(φy), Rz(φz)
are rotational matrices defined by

Rx(∆φx) =

1 0 0
0 cosφx − sinφx

0 sinφx cosφx

 , (12)

Ry(∆φy) =

 cosφy 0 sinφy

0 1 0
− sinφy 0 cosφy

 , (13)

Rz(∆φz) =

cosφz − sinφz 0
sinφz cosφz 0

0 0 1

 . (14)

Figure 5. Panel method — FEM interaction.

Load control scheme. In the Newton/Rhapson
method, the total load is divided into m load steps
and for each load step, a Newton iteration is done
until an equilibrium between the internal forces and
external load is found. After that, the external load
is increased by the load step. However, in the case
of an elastic wing, the total external load is unknown
because the load (lift) also depends on how much
the wing is deformed. Therefore, the standard load
control in the Newton/Rhapson method was changed
in the following way: The load is controlled by in-
creasing the angle of attack as explained in Figure 4.
Usually the lift generated by the wing (sailplane) is
the dependent variable in the u–F curve. To compute
the load generated by the elastic wing, a following
scheme is used:
(1.) The first iteration starts at an angle of attack of
zero lift of a rigid wing. The equilibrium between
the external load computed from the panel method
and internal forces is computed using the Newton
iteration.

(2.) The angle of attack is increased by a small step,
e.g., 1° and the equilibrium between the aerody-
namic load and the internal forces is computed by
the Newton iteration.

(3.) The angle of attack is further increased until the
total load (lift) is equal to the desired load (lift).

The result is a nonlinear lift curve. For each load
step, the vector of internal forces is also a nonlinear
function of previous load steps. Therefore when com-
puting a load of an elastic wing it is convenient to
compute a wing lift curve as described above with
very small increment of the angle of attack, e.g., 0.5°
and to save the vector of deformation and internal
forces for each converged load step. When comput-
ing large number of load cases, significant savings
in the computational time are achieved when the
pre-computed deformation vector and internal forces
vector are loaded for the closest lower angle of at-
tack. One then needs to compute only the difference
between the pre-computed angle of attack and the
desired angle of attack.

275



Pavel Schoř Acta Polytechnica

Figure 6. Aero-structural interaction — load control in Newton-Rhapson method.

Figure 7. Coordinate systems.

3. Numerical study
3.1. Overview
A numerical study was conducted to demonstrate the
importance of the elasticity of the wing for its load.
Assuming a flight envelope from [2, par. CS22.333],
and considering the point A of the envelope to be crit-
ical, the aerodynamic load at this point is evaluated
using three different methods:
(1.) panel method with elastic wing;
(2.) panel method with rigid wing;
(3.) lifting line theory.
The lifting line theory is used as a validation tool for
the panel method.

3.2. Coordinate systems
A global right-handed coordinate system OXY Z de-
fined in Figure 7 is used. Additional local coordinate
systems oixiyizi are used for evaluation of the local
load. As the wing deforms, these coordinate systems

Property Symbol Value
Area A 11.55m2

Span L 21.0m
Root chord cr 0.7m
Tip chord ct 0.4m
Dihedral Γ 0 rad
Sweep Θ 0 rad

Table 1. Wing geometry.

Property Symbol Unit
Cross section area AS m2

Second moment of area Ix m4

Second moment of area Iz m4

Torsional constant Jy m4

Offset of neutral axis ∆Xn m
Offset of neutral axis ∆Zn m
Offset of elastic axis ∆Xt m
Offset of elastic axis ∆Zt m
Young modulus E N/m2

Shear modulus G N/m2

Table 2. Wing cross sectional properties.

follow the deformed geometry. The free stream veloc-
ity V with positive angle of attack is also shown in
Figure 7.

3.3. Wing specimen
A simple tapered wing is examined in this study. The
wing is designed as a planar wing in undeformed state.
The wing has one straight main spar located at 0.25c,
where c is local chord. The main reason for this
geometry is the evaluation of the load by the lifting
line theory, which can not be used for a non-planar
wing geometry and nor swept wings.
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Figure 8. Spanwise variation of Iz, Ix, Jy.

Figure 9. Airfoil E603 inviscid aerodynamic data.

Geometry. Geometry of the wing is described in
Table 1. An Eppler E603 airfoil is used for all sections
of the wing.

Stiffness properties. When analyzing the defor-
mation of the wing by the FEM analysis described
above, an instrumental step is the determining of all
cross-sectional characteristics defined in Table 2 for
all cross sections of the wing. In this example, the
Young’s modulus E and shear modulus G are assumed
as constant for the whole wing with following values:

E = 60GPa, G = 7GPa.

The wing has only one spar at 0.25c and the nodes are
coincident with the spar. Therefore the offset of the
elastic axis is almost negligible and both values are
assumed to be zero. The neutral axis is located at the
local centroid with non-zero offsets, but these offsets
are not shown in this paper. The spanwise variation
of the Second moments of area and torsional constant
is shown on Figure 8.

Finite element model. The wing is divided into
162 spanwise sections. Each section has one two-
noded beam element described in Section 2. Nodal
coordinates always correspond to a location of a main
spar. The node located in the plane of symmetry has
all degrees of freedom prescribed to zero. All coupling
terms in the element stiffness matrices related to the
bending-torsion coupling are intentionally set to zero
for clarity.

Airfoil data. The aerodynamic characteristics of
the Eppler E603 airfoil were obtained from the XFOIL
inviscid analysis, as shown in Figure 9. This aerody-
namic data are used only for the lifting line analysis.

3.4. Loadcase VA
Assuming a maximum lift coefficient of the wing
CLmax = 1.4, from Figure 10, the flight conditions at
point A of the maneuvering envelope are shown in Ta-
ble 3 The total mass of the glider is MTOW = 750 kg,
but inertia forces acting on the wing are not assumed
in the analysis for clarity.
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Figure 10. Comparison of rigid and elastic wing — lift.

Property Symbol Value
Airspeed V 64.0m/s
Wing lift coefficient CL 1.4
Load factor n 5.3

Table 3. Load case VA.

Deformation sequence. Deformation sequence for
various wing lift coefficient is shown in Figure 11. It
must be noted that this deformation sequence is valid
only for airspeed V = 64.0m/s. As the deformation
of the wing depends on forces and moments applied
on the wing surface, for a different airspeed, the cor-
responding deformed shape will be different.

Integral aerodynamic characteristics. Integral
aerodynamic characteristics of the rigid and elastic
wing are compared on Figures 10 and 12. A close
agreement for rigid cases can be observed.
For the elastic case a significant decrease of the

slope of the wing lift curve can be seen in Figure 10.
Additionally, the increase of pitching moment of the
elastic wing can be seen in Figure 12. The differ-
ences between rigid and elastic cases are discussed in
Section 4

Load comparison. Actual comparison of the load
for the rigid and elastic wing performing a steady ma-
neuver with the same load factor n = 5.3 is shown in
Figures 13–15. Only bending and torsional moments
are shown. The differences between the rigid and
elastic case are discussed in Section 4

4. Discussion
4.1. Validation of results
There are two main options to validate the result
computed by the presented method:

Figure 11. Deformation sequence at VA.

Numerical validation. A numerical validation
means to prerform the case study using a RANS CFD
solver as a source of aerodynamic data coupled to a
wing modeled by shell elements or by 3D solid ele-
ments.

Experimental validation. Experimental valida-
tion means to actually fly a glider, perform the pull
maneuver and measure the displacement of the wing.

Conclusion on validation. Unfortunately both
numerical and experimental validation would require
much more effort and funds than what was spent for
this whole work. A literature review also did not give
any example, which could be used as a validation
benchmark. Therefore, this work is presented only as
a numerical study without any other validation.

4.2. Decrease of wing lift curve slope
As the lift generated by the elastic wing increases, the
wing bents more, as shown in Figure 11. As the wing
bents more, the slope of the lifting curve drops. This
is demonstrated in Figure 10, which shows a reduced
slope of the lift curve of the elastic wing, compared
to the rigid wing. This phenomena could possibly be
explained by the reduction of the projected area of
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Figure 12. Comparison of rigid and elastic wing — pitching moment.

Figure 13. Comparison of rigid and elastic wing — Normal bending moment Mx.

the wing and the change of direction of the lift force.
This has following consequences:
(1.) When the prescribed total lift is reached, the
wing operates at a higher angle of attack. In the
particular case presented in Section 3 the difference
of the critical angle of attack is 6°.

(2.) The normal bending moment is slightly reduced,
see Figure 13. The tangential bending moment is,
however, increased due to the increased angle of at-
tack, see Figure 15. In the particular case presented
in Section 3 the tangential bending moment of the
elastic wing is 1.34 times higher, than in the rigid
case. The normal bending moment is, however, 0.87
times lower.

4.3. Increase of wing pitching moment
The explanation of the increase of the wing pitching
moment requires more labor than the explanation of
the decrease of the wing lift curve slope. First, assume
a wing cross section located at the wing tip. The
wing is of an undeformed shape and operates near

the critical angle of attack. The section generates
a pitching moment around the main spar MY 1 =
1
2ρv

2S1c1cm1(α). The resultant of the aerodynamic
force is assumed to act at the main spar (0.25c). The
direction of the force is upward and forward (negative
X, positive Z). When the wing has zero dihedral
and zero sweep, the contribution of this force to the
pitching moment is zero, since the vector of the section
reference point related to the wing reference point
~r1 = [0,−10.37, 0]. The wing reference point is defined
as a point (node) on the main spar in the XZ plane.
Next, assume a highly deformed wing shown in

Figure 16. The wings tip section is displaced by a
vector

~d1 = [−0.12, 2.5, 5.15],

the vector of the section reference point related to the
wing reference point is now

~r1 = [−0.3,−8, 5.15].

The resultant of the aerodynamic force at the wing
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Figure 14. Comparison of rigid and elastic wing — Torsional moment My.

Figure 15. Comparison of rigid and elastic wing — Tangential bending moment Mz.

reference point is computed as

~f1 = [−6.07, 49.38, 9.31],

then, the resulting moment at the wing reference point
generated by the force ~f1 is

~m1 = ~r1 × ~f1 = [−329.05,−28.51,−63.32].

When the pitching moment of the section is evalu-
ated, the contribution of ∆MY 1 = −28.51Nm causes
to increase the pitching moment coefficient of the sec-
tion by a value of −0.55 mostly due to the vertical
displacement of the section and the force resultant
directing forward.

4.4. Wing maximum lift
In this article, the maximum lift coefficient of the rigid
wing was computed using the nonlinear lifting line
theory as CLmax = 1.4. The airfoil sectional data used
in the analysis were computed by the XFOIL inviscid
analysis, assuming to be close to the experimental
data. Since the purpose of this article is to present a

Figure 16. Pitching moment of highly deformed wing.

potential problems of an aircraft with a highly elastic
wing, rather than to make a prescription based on
practical results, the maximum lift coefficient of the
elastic wing is also assumed to be CLmax = 1.4.
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For a practical application of the method, it may
be in some cases necessary to limit the maximum lift
of the elastic wing directly in the panel method. This
is achieved by employing the viscous boundary layer
coupling in the panel method, as in [10, 12]. Also,
when including the viscous drag, the tangential force
acting at a high angle of attack at wing sections may
be reduced, resulting in a lower pitching moment.

5. Conclusions and future work
5.1. Future work
The 3D panel method usually provides a fast and
reliable source of aerodynamic data. However, when
the viscous effects are significant as in the case of the
HALE aircraft or a glider with bumps on its lift curve,
the computed load may not be adequate. To solve
this issues, it is necessary to extend the panel method
with the calculation of the viscous boundary layer [10].
With this extension, the method may be applicable
to solve practical problems.

5.2. Conclusions
A simple and robust method for a calculation of a
load of an aircraft with highly elastic wings was de-
veloped. Two eventual problems of an aircraft with
highly elastic wings were discovered:
(1.) increase of tangential bending moment;
(2.) increase of pitching moment.
The main advantages of the presented method are

simple definition of the wing stiffness, absence of the
volume mesh around the wing and problems related
with remeshing at large deformations. The main ad-
vantage is a very fast computational time, one aeroe-
lastic iteration can be computed within minutes on
an average workstation. When the problem is not re-
duced and the aerodynamic inputs are solved with the
RANS CFD solver, it takes significantly more time on
much more powerful computers, making such method
unsuitable for a calculation of large numbers of load
cases.
Following the NASA Helios mishap report [1], a

relation between a highly bent wing and its pitching
moment was found by the present method. However,
due to the fact that the Helios HP03 operated at
a very low Reynolds number, making the present
method unsuitable and due to the lack of any data
regarding the Helios aircraft, no conclusions could be
made. The demand for new analysis methods from
the report [1] can be possibly fulfilled. Due to a
very fast computational time, it is possible to extend
the method into the time domain, and therefore also
analyze the unsteady cases [8].
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