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Abstract. We draw attention on the fact that the Riccati-Padé method developed some time ago enables
the accurate calculation of bound-state eigenvalues as well as of resonances embedded either in the
continuum or in the discrete spectrum. We apply the approach to several one-dimensional models that
exhibit different kind of spectra. In particular we test a WKB formula for the imaginary part of the
resonance in the discrete spectrum of a three-well potential.
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1. Introduction
In a recent paper Gaudreau et al[1] proposed a method for the calculation of the eigenvalues of the Schrödinger
equation for one-dimensional anharmonic oscillators. In their analysis of some of the many approaches proposed earlier
with that purpose they resorted to expressions of the form: “However, the existing numerical methods are mostly case
specific and lack uniformity when faced with a general problem.” “As can be seen by the numerous approaches which
have been developed to solve this problem, there is a beautiful diversity yet lack of uniformity in its resolution. While
several of these methods yield excellent results for specific cases, it would be favorable to have one general method
that could handle any anharmonic potential while being capable of computing efficiently approximations of eigenvalues
to a high pre-determined accuracy.” “Various methods have been used to calculate the energy eigenvalues of quantum
anharmonic oscillators given a specific set of parameters. While several of these methods yield excellent results for
specific cases, there is a beautiful diversity yet lack of uniformity in the resolution of this problem.” The authors put
forward an approach that they termed double exponential Sinc collocation method (DESCM) and reported results of
remarkable accuracy for a wide variety of problems. In fact they stated that “In the present work, we use this method
to compute energy eigenvalues of anharmonic oscillators to unprecedented accuracy” which may perhaps be true for
some of the models chosen but not for other similar examples. For example, in an unpublished article Trott[2]
obtained the ground-state energy of the anharmonic oscillator with potential V (x) = x4 with more than 1000 accurate
digits. His approach is based on the straightforward expansion of the wavefunction in a Taylor series about the origin.

One of the methods mentioned by Gaudreau et al[1] is the Riccati-Padé method (RPM) based on a rational
approximation to the logarithmic derivative of the wavefunction that satisfies a well known Riccati equation[3, 4]. In
their brief analysis of the RPM the authors did not mention that this approach not only yields the bound-state
eigenvalues but also the resonances embedded in the continuum[5]. What is more, the same RPM quantization
condition, given by a Hankel determinant, produces the bound-state eigenvalues, the resonances embedded in the
continuum as well as some kind of strange resonances located in the discrete spectrum of some multiple-well
oscillators[6]. It is not clear from the content of[1] whether the DESCM is also suitable for the calculation of such
complex eigenvalues.

The accuracy of the calculated eigenvalues not only depends on the chosen method but also on the available
computation facilities and on the art of programming. For this reason the comparison of the accuracy of the results
reported in a number of papers spread in time should be carried out with care.

The purpose of this paper is two-fold. First, we show that the RPM can in fact yield extremely accurate
eigenvalues because it exhibits exponential convergence. To that end it is only necessary to program the quantization
condition in an efficient way in a convenient platform. Second, we stress the fact that the RPM yields both real and
complex eigenvalues with similar accuracy through the same quantization condition. More precisely: it is not
necessary to modify the algorithm in order to obtain such apparently dissimilar types of eigenvalues that are
associated to different boundary conditions of the eigensolution.

In section 2 we outline the RPM for even-parity potentials. In section 3 we apply this approach to some of the
examples discussed by Gaudreau et al[1] and obtain eigenvalues with remarkable accuracy. In this section we also
calculate several resonances supported by anharmonic oscillators that were not taken into account by those authors.
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We consider examples of resonances embedded in the continuous as well as in the discrete spectrum. Finally, in
section 4 we summarize the main results and draw conclusions.

2. The Riccati-Padé method
The dimensionless Schrödinger equation for a one-dimensional model reads

ψ′′(x) + [E − V (x)]ψ(x) = 0, (1)

where E is the eigenvalue and ψ(x) is the eigenfunction that satisfies some given boundary conditions. For example,
lim
|x|→∞

ψ(x) = 0 determines the discrete spectrum and the resonances are associated to outgoing waves in each channel

(for example, ψ(x) ∼ Aeikx). In this paper we restrict ourselves to anharmonic oscillators with even-parity potentials
V (−x) = V (x) to facilitate the comparison with the results reported by Gaudreau et al[1] but it should be taken into
account that the approach applies also to no non-symmetric potentials[7].

In order to apply the RPM we define the regularized logarithmic derivative of the eigenfunction

f(x) = s

x
− ψ′(x)
ψ(x) , (2)

that satisfies the Riccati equation

f ′(x) + 2sf(x)
x

− f(x)2 + V (x)− E = 0, (3)

where s = 0 or s = 1 for even or odd states, respectively. If V (x) is a polynomial function of x or it can be expanded
in a Taylor series about x = 0 then one can also expand f(x) in a Taylor series about the origin

f(x) = x

∞∑
j=0

fj(E)x2j . (4)

On arguing as in earlier papers we conclude that we can obtain approximate eigenvalues to the Schrödinger
equation from the roots of the Hankel determinant

Hd
D(E) =

∣∣∣∣∣∣∣∣∣
fd+1 fd+2 · · · fd+D

fd+2 fd+3 · · · fd+D+1
...

...
. . .

...
fd+D fd+D+1 · · · fd+D−1

∣∣∣∣∣∣∣∣∣ = 0, (5)

where D = 2, 3, . . . is the dimension of the determinant and d is the difference between the degrees of the polynomials
in the numerator and denominator of the rational approximation to f(x)[3–6]. In those earlier papers we have shown
that there are sequences of roots E[D,d], D = 2, 3, . . . of the determinant Hd

D(E) that converge towards the bound
states and resonances of the quantum-mechanical problem. We have at our disposal a set of sequences for each value
of d but it is commonly sufficient to choose d = 0. For this reason, in this paper we restrict ourselves to the sequences
of roots E[D] = E[D,0] (unless stated otherwise).

In this paper we are concerned with anharmonic-oscillator potentials of the form

V (x) =
K∑

j=1
vjx

2j . (6)

The spectrum is discrete when vK > 0 and continuous when vK < 0. In the latter case there may be resonances
embedded in the continuous spectrum which are complex eigenvalues. The real part of any such eigenvalue is the
resonance position and the imaginary part is half its width Γ (|=E| = Γ/2).

3. Examples
Four examples chosen by Gaudreau et al[1] are quasi-exactly solvable problems; that is to say, one can obtain exact
solutions for some states:

V1(x) = x2 − 4x4 + x6 E0 = −2
V2(x) = 4x2 − 6x4 + x6 E1 = −9

V3(x) = 105
64 x

2 − 43
8 x

4 + x6 − x8 + x10 E0 = 3
8

V4(x) = 169
64 x

2 − 59
8 x

4 + x6 − x8 + x10 E1 = 9
8 . (7)
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The RPM yields the exact result for all these particular cases because in all of them the logarithmic derivative f (x) is
a rational function of the coordinate. The Hankel determinants of lowest dimension for each case are:

H0
2 (E) = 1

4725(E + 2)(E5 − 2E4 − 23E3 − 602E2 + 1030E − 1412), (8)

H0
2 (E) = 1

4465125(E + 9)(E5 − 9E4 − 187E3 − 8217E2 + 78336E − 348624), (9)

H0
3 (E) = 1

3189612751764848640000(8E − 3)(8589934592E11 + 3221225472E10

− 1887235473408E9 − 399347250364416E8 − 1634745666502656E7

+ 10770225531715584E6 − 836065166572191744E5 − 905684630058491904E4

+ 5197219286067104256E3 − 2944302537136698432E2

− 12283878786837315912E + 22452709866105906693), (10)

H0
3 (E) = 1

431028319209742820966400000(8E − 9)(8589934592E11 + 9663676416E10

− 5569096187904E9 − 2064531673055232E8 − 15362232560910336E7

+ 158709729905344512E6 − 23752960275863896064E5 − 84068173973645402112E4

+ 2318080070178601634304E3 − 6274577633554290840768E2

− 75410626140297229262472E + 655367638076442656931879), (11)

respectively. It is clear that the second factor of each Hankel determinant yields the exact eigenvalue of the
corresponding model in equation (7).

As a nontrivial example we consider the quartic anharmonic oscillator

V (x) = x2 + λx4. (12)

Gaudreau et al [1] calculated the ground state for λ = 1 with remarkable accuracy. The RPM also enables great
accuracy because of its exponential convergence. For example, with determinants of dimension D ≤ 623 we obtained

E0 = 1.39235164153029185565750787660993418460006671122083408890634932387756743187564652
85909735634677917591211513753417388174455516240463837130438178697370013460935168
15484208574889656901800305541236648743218953435715417409382624057229519998568711
18140968922702273638169811112603107034293861341959645684859182914634898518858148
63025469392145221031177208948219643654580541741801366088701870825264349698158700
82340760759574319226851138960019685449394982096240756162094619633463447377455701
49211492623468905916373385630626814055709925106270580909505786666030935831448351
97352905560061049224302849821825415119194035000689109989896675454979833183805654
19975466162573031052729404581567529262538228672118076018319975294595611113245756
78445653018419567798509749315372254188588216960225999726980950846580656370213654
47651793869049904755455309191949465274340562585980971938979595684138772300267900
68177673277845708654477245631366268184519934644126051969150124972306172724393638
74511499751517142498813649966422950045954851519165072488133686158144218817306000
39773536840117104637678735672726392478420532548924901523470626991951440934018875
83071929546817823113125377471312004221881276679422460872268510606766179549130792
640798558850522732484547554994100518213983,

which is considerably more accurate than the result reported by those authors. Such an accuracy is unnecessary but it
clearly shows the stability and remarkable rate of convergence of the RPM.

For some approaches the pure quartic oscillator

V (x) = x4 (13)
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may be more demanding than the oscillator treated previously. However, this is not the case for the RPM that yields
E0 = 1.06036209048418289964704601669266354551520872852829779332162452416959435630443444

21126896299134671720351054624435858252558087980821029314701317683637238249357892
26246004708175446960141637488417282256290593575779088806178879026360154939569027
51961489200942934873584409442694897901213971464290951923352453382834703350575761
51120257039888523720240221842110308657373109139891545365841031116794058335486020
09227440069631126702388622971429699610592155832226671376935508673610000831830027
51792623357391390621361807764985969618149941279280927284070795610604240722946809
94913627572927387279136890279842472226217169444889547513704380684054391877877295
32342458274372543178323190603810687416044034374530146847272813918612940470431034
01351071607110353008929823272542766151898695056504716025275608952626219102568822
00964410287815640052705292932405076382650282591122477362538471854714402572285438
48529745045857097828402490669995704768445877091762029124375273254907211643344023
02947306923981908956853745359884460160202313291933059395869304916644281633946163
32428700242614612377430099522342042085977356901535654168502308941851348795734106
58547971946759646679661346762885864379526545195605682867159583388847434670120422
42071491874787103842957338913898524589402226347126961769965604409311709985471606
46641857421281143028818111495112214843140887121662059313076923418022298272468836
26045356507913236221596486925870033200274440968806404623978817839469837807048268
60217427219460350750696191658224983009606134572666392863592217643534013718920448
14846483730289412529638634402446954353934473733433447707230478215508820964235121
06900382833900237848230939194834

from determinants of dimension D ≤ 806. We think that present result is more accurate than the one reported by
Trott[2], the discrepancy being in his last 9 figures. In the case of the quartic anharmonic oscillators (6) and (12) it
was proved that E[D,0]

0 and E[D,1]
0 are lower and upper bounds to the actual eigenvalue, respectively[3, 4]. In order to

verify the accuracy of present calculation we verified that both bounds agreed to the last digit.
As stated in the introduction, the RPM yields not only the bound states but also the resonances. For example, in

the case of the anharmonic oscillator (12) with λ = −0.1 (inverted double well) we obtain
<E = 0.90067290409201502480472168921028775830460331662203069831718516924034871463944702

49616726790089628268825293776377464732577257777502973177491351445742473385877709
26803971267801469755869917579845522512000205420137720995176766371327034480743071
07713982008790873985646991861751535214021599017867320106022879739539457665858699
75562973189279258249081617920321264175746331544068756411634377154244333590011287
04230510965330925907792495147669628533284309302211234477027796391708328562113084
41726909573060442238866068277795715277616928060425810097530790289082978267983213
67842682657484596201757300110536533702699585361715680944542285361299988968687820
12308852365127364727689632938045419946222831027030494463529154344400824268783119
49185729315006099566578108828241145777722487108371656443716078796497379465206234
879130342123770426063990565158077971857506099342729619

and
|=E| = 0.00669328087580013026927187508131824112294989432621696735893314097282610915605850

43018393541639674627243621481357409744100069700186351017147154410094249647120952
59566361194259386325794519366933621549298669570727785778446401403144312336955986
73980375283541840546888210884788662488801718718713379746362368368461205368517345
68189777241623332803606777032301489912446298837896455581815166460445660555875128
54363903733935667870354171283504808639418360504429532217074896601384341982511525
91876064523830978322014707732840778218698514295641443748495983816659272161010695
96118632431428217783653913815974284318203202992357388742962705328614872135008968
45311943228106834110088574337059948926573991903248493789402558550272582426356810
29615386184966870885537480832794653421556685850226225141032328397825281636792728
913688704017585002638602666568373554869393536520227140
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Figure 1. Present calculation of |=E|g2 exp[1/(2g2)] for the oscillator (14) (solid line) and the results of Benassi et al[8]
(filled circles), Killingbeck[9] (crosses) and Fernández[6] (empty circles).
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Figure 2. log|=Eres| (circles) and log|<Eres − Ebs| (solid line) vs. g for the oscillator (14) with k = 1.

with determinants of dimension D ≤ 429. As far as we know this resonance was not calculated with such an accuracy
before.

A most interesting example is given by

V (x) = x2(1− g2kx2k)2, k = 1, 2, . . . (14)

It is a three-well potential with minima V (xm) = 0 at xm = −1/g, 0, 1/g. Since V (x) behaves asymptotically as
g4kx4k+2 when |x| → ∞ then one expects only bound states with positive eigenvalues when g is real. However,
Benassi et al[8] proved that this family of potentials supports complex eigenvalues with all the properties of actual
resonances. They calculated the lowest resonance for k = 1 and several values of g and compared the imaginary part
with the WKB transmission coefficient through the barrier |=EWKB| ∼ Ag−2e−1/(2g2). Later Killingbeck[9] and
Fernández[6] calculated this resonance more accurately and for smaller values of g and showed that |=E|g2e1/(2g2)

does not exhibit a uniform behaviour as suggested by the earlier calculation of Benassi et al[8]. In particular,
Killingbeck[9] suggested that |=E|g2e1/(2g2) exhibits a maximum. In this paper we calculated =E even more
accurately and for smaller values of g and present results, shown in Figure 1, suggest that the conjecture that “the
imaginary part of the resonance behaves as the WKB transmission coefficient through the barrier” may not be correct.
The results of Benassi et al[8] for a shorter interval of g (also shown in the figure) give the impression that |=E| has
already reached the asymptotic behaviour Ag−2e−1/(2g2) which is not the case. The figure also shows the earlier
results of Killingbeck[9] and Fernández[6]. A straightforward least-squares fitting of present results suggests that the
correct behaviour is |=E| ∼ Ag−3/2e−1/(2g2).

The lowest bound state Ebs and the real part of the lowest resonance <Eres approach each other as g → 0 in such
a way that |Ebs −<Eres| is of the order of |=Eres|. This fact is clearly shown in Figure 2.
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The RPM enables us to calculate the bound states and resonances quite accurately. In what follows we show some
of them for the potential (14) with k = 1 and g = 0.2.

By means of the RPM for even solutions and from determinants of dimension D ≤ 775 we have estimated

Ebs = 0.93247629196422125071328330705170258832085891016425094045219553044054139703731261
50649025687960895922690251875547008545901420481160447985150327460757263156945963
43111670051681020512461078632259474114210076408768061413506747150659467931140457
73553564279657808191641005760522714953011384832488596806112996385064780658000126
21383561744399262787670426442500032348267656012265260808541171888390190812639425
68677114253841158525832058185894866049673942610420369468954266459806798388982945
52842394543958516825976072367841054683416775046265615981244952016961280615722797
48522242230626330783391577288128021207208653859352779699723097379217744729225892
87271537226473008063005886824272445164895449164007979447482255960907744830950818
89615946058064623691858375392064608307256038193215181635793814371703342844510929
37725091255795633498661026822076286385619429762725138253425155067910751071052934
27678838734764019823945574715117575021473073907215347869490374168192236026830615
21556243352973248410809257466846919735225097807676751284064233765380645890401273
18619105202

Analogously for the lowest resonance and from determinants of dimension D ≤ 691 we obtained:

<Eres = 0.93255571582477452179676759062168990966452649573421385221674869167644974697878297
48288966600919521327429371760006946990662957241091484006768849519862253721798569
03644092281642425061693541023975965045234361601035467225031110683747763474057010
51766932213808285413600743099773501734379824559724078809842601314254466796141742
91619009303111780839333634172120375607438466877056145373073135249510667485570624
89027647576289516788138371419308234504770062385126389060959383615011639231234684
57211692027452357322762788434499112499793762153016569474982638402568272061044967
57607047286711883739177838606163003503292340210633885558943987330696955212335784
93874116286488958371712887316534334151628894506338250698992826979320533720965089
88556846872196309982663487612817769715053392472202304048467020861359787434424925
59863763422430231269302968797027663315298386727326660998017953973558253873774320
28276057502051489621320017464691543602109098291291138852305607511705280075050547
31063488489167352701182508545578769602211943958747945495907096406141902643986905
961993842355299216457009181864846232

and

|=Eres| = 0.00007947755439967676505760377892185789878110774221147849846562298140940287872947
52814620456361561420900287744454602944560211411630458002357096383649249663353905
93979913154236677754548179049553949689291444857540625794291105410645679094978056
41816263278056667538823349949542205608756116364818300568742472113706771598651231
12232223161645886340846246512372878392991668617618608612772397082468681323616728
00836809517307934131065936050216138586041138997026063630166041325256674247334326
43452840700483694029457383472779415364601962826737820988546159296790266714989827
39605417180355053196497236273391245943204665614834862888093604238202929173352801
81595403275922724519616282059509694047641804540493112851992354566868017448385193
11460588382980693005767597962983844809253130883910114862611244720438384400036226
34440542902129912310559505324166128805952316820324901792013542095770499491750179
98930282112536345025370257070876889601213519024449712700584132800465221829233233
94262461014032693652500467599419583388257944132536527371823587596625269628927792
231287512255675814299886872626419368

There are also resonances among the odd solutions that, as far as we know, have not been reported so far. For
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Figure 3. Slope b(g) for the lowest even bound state (dashed line) and resonance (solid line) of the oscillator (14).

example, from determinants of dimension D ≤ 675 we have estimated

<E = 2.61567434444732550869411505135245734080470814119820813364017253899303022317155434
31391542639715932621127326167835416895521493397749245764591162235274203164591933
37244178082714412489418172286638540171259856180564528065416001947539967118936646
75571877202323193379545799865521628801842268028131214215002900102213105491896812
63767311711861097761090862732339313659663532602566940509690710619685623673577427
02051685651830157091563631235768241343388226233422149668046828337636970321537470
63887197465955131025788601409986649525116758890729464265922333123256268369696059
26941420850055176884146238393937196844266014963704437945590546005662856976368611
00640491298239429318015921498341474779363074158208007782572407910054254871310091
68973174851641282036957946732252836879151952555347108138232897278070434422830026
26704068364463061804095353910257042206327201629122973971604907355532903654161470
19439703881706172720156058384564059563205471991977312223713679619282236509718612
52126293985829302685817040822296771556201493457627526395925393874890357857758914
87383866271

and

|=E| = 0.01210300605494968941953209254767687990290906183125611460665539748357431001508023
85800465110061978821958452802312257429199680274874976714780325247533274025385051
78880120535081995629925326152262013101282905412439967483243664748674923025125583
00454126258993517009810558255025650762548260826491229849682682236927325028722181
10911763777690357826524770782300369066474079388696220057742156320915294160429729
01294409355539289307179903232721645370003682922827262095476379354302765153737115
51880437155380856923219516679773451544032806175085515778612944592637256659887303
30512036322261513744864521271324704804249317847540296878526243141260350713152579
08326500268541345099397960617177832968775259890292555657102142040050150226184141
73159023284305913490500706092689513886545759177324808900693017255028438277583325
25877330744338536629042846929583130852297856757526856279666216561614392371093267
54690511115693585022173938512605471651051770646269662062872998357747210540745535
26126483662119100873839728146718246141274682165252936046723308704728026198914481
33285093213

The rate of convergence of the RPM for the bound states and the resonances may be different. One way of monitoring
the rate of convergence is to calculate log|E[D] − E[D−1]| which is a straight line when the rate of convergence is
exponential. In the present case we fit y(D) = a + bD to log|E[D] − E[D−1]| and obtain b(g) for several values of g.
The results for the lowest even bound state and resonance are shown in Figure 3. That figure clearly shows that the
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rate of convergence for the resonance is almost constant whereas it decreases with g for the bound state. As a result it
is possible to obtain the resonance for small values of g, say g < 1, more accurately by means of determinants of
similar and even lesser dimension. However, this advantage is counterbalanced by the fact that the mathematical
operations require more CPU time when complex numbers are involved.

In order to carry out the necessary arithmetic of complex numbers with arbitrarily high precision we resorted to
the GNU MPC C library[10] and to the recurrence relation:

Hd
D =

Hd
D−1H

d+2
D−1 − (Hd+1

D−1)2

Hd+2
D−2

, (15)

for a fast calculation of the Hankel determinants.

4. Conclusions
Throughout this paper we tried to stress two points. The first one is that the RPM can yield eigenvalues of
remarkably accuracy if the algorithm is programmed judiciously. To this end we have calculated the lowest eigenvalues
of the oscillators (12) (with λ = 1) and (13) with greater accuracy than those reported by Gaudreau et al[1] and
Trott[2], respectively.

The second point is that only one RPM quantization condition applies to bound states and resonances. To
illustrate it we calculated the resonances for two models with great accuracy. One of them is an ordinary resonance
embedded in the continuum and other one is some kind of strange resonance appearing in the point spectrum close to
the ground state. Present results for the lowest resonance in the discrete spectrum of the three-well potential (14) give
support to the conjecture that the analytical WKB formula for the resonance width derived several years ago[8] may
not be correct. Present results improve considerably upon those reported earlier by Killingbeck[9] and Fernández[2]. It
is not clear to us whether the DESCM[1] or the power series approach[2] may also be applied to resonances without
considerable modification of the calculation algorithms.

It is not our purpose to criticise the DESCM which is clearly a powerful algorithm as already proved by the
remarkable calculations carried out by Gaudreau et al[1] on a wide variety of one-dimensional models. We just wanted
to draw attention to some advantages of the RPM that have been overlooked in the discussion of the method carried
out by those authors.
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