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Abstract. Stability and control derivatives of Skywalker X8 flying wing from flight-test data are
estimated by using the combination of the output error and least square methods in the presence
of the wind. Data is collected from closed loop flight tests with a proportional-integral-derivative
(PID) controller that caused data co-linearity problems for the identification of the unmanned aerial
vehicle (UAV) dynamic system. The data co-linearity problem is solved with a biased estimation via
priori information, parameter fixing and constrained optimization, which uses analytical values of
aerodynamic parameters, the level of the identifiability and sensitivity of the measurement vector to
the parameters. Estimated aerodynamic parameters are compared with the theoretically calculated
coefficients of the UAV, moreover, the dynamic model is validated with additional flight-test data and
small covariances of the estimated parameters.

Keywords: flight system identification; aerodynamic coefficient estimation; data co-linearity; least
square method; output error method.

1. Introduction
A system identification can be used to characterize
forces and moments acting on a UAV. The UAV dy-
namic system identification is applied to find the func-
tional dependence of aerodynamic forces and moments
for the UAV motion and control variables based on
flight-test data.
The aerodynamic characteristics of a UAV can be

obtained by these methods:
(1.) computational methods,
(2.) wind-tunnel testing
(3.) UAV dynamic system identification from flight
test data.

There are several advantages to perform the UAV
dynamic system identification from flight-test data [1–
11]:
• To verify and interpret theoretical, numerical and
experimental (wind-tunnel test) predictions and
results of the UAV dynamic characteristics;

• To find more accurate and realistic uncertain math-
ematical models of the UAV dynamics, used in the
flight control systems design;

• To develop flight simulators, which require accu-
rate representation of the UAV dynamic model in
different flight regimes. Many UAV manoeuvres
and flight conditions cannot be conducted simply
in wind tunnel nor by analytical or numerical com-
putations with sufficient accuracy or efficiency;

• To expand the flight envelope for a new UAV, which
can include the stability quantification and control

the impact of UAV modifications, configuration
changes, or special flight conditions;

• To verify the UAV specification complied with the
flight conditions.

There are four important principles known as Quad-
M that must be considered in the identification of
the flight vehicle (Figure 1): good Manoeuvres or
a persistent excitation, sufficient Measurements, a
selection of suitable Model and Method [5, 12]. In
general, an estimation of the aerodynamic coefficients
can be performed in two ways:
(1.) Estimation after modelling, some methods in-
clude: equation error method, least square method
(LSM), output error method (OEM), optimization
methods (such as genetic algorithm, simulated an-
nealing, pattern search), Kalman filter, filter error
method or maximum likelihood method (Kalman
filter+OEM), model error estimation;

(2.) Estimation before modelling: singular system
approach for unknown inputs estimation, Gauss-
Markov stochastic models for unknown inputs, com-
bination of the Kalman filter and neural network,
combination of stochastic models and an optimiza-
tion methods [3–7, 9, 11–15].
Particular application of the dynamic model deter-

mines its accuracy requirements and estimation or
identification methods of the UAV dynamic model [1,
16]. A high accuracy level is required to process the pa-
rameter monitoring and failure detection. A medium
to high level of accuracy is required for the verification
of the theoretical model (off-line). A low to medium
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Figure 1. Quad-M principles for flight system identi-
fication.

level of accuracy is required for the tuning of the
control system parameters (off-line), adaptive control
(on-line) and digital control system design (on-line
and off-line) [1].
Usually, optimal persistent exciting inputs (ma-

noeuvres) are designed so that an assumed aerody-
namic model structure (usually linear) would be ad-
equate to characterize the data for estimating the
aerodynamic coefficients of the flight vehicles [3, 5–
7]. Flight tests are performed for the open loop
conditions in the calm weather [3]. This elimi-
nates the need to include the process noise in the
model so that a simpler output-error method can
be used in the data analysis and modelling. How-
ever, it is not always possible to fulfil all these
conditions. Usually, wind is present in the flight
tests and persistent exciting manoeuvres cannot be
designed. In addition, in some models, feedback
presence can lead to completely incorrect results
of system identification [5, 6, 13]. Therefore, pa-
rameters estimates diverge from actual values or
are multivalued. However, sometimes it is neces-
sary to perform the identification in the presence
of a feedback due to the instability of the object it-
self, the economy, the presence of inherent feedback,
safety, production considerations, etc. Therefore, it
is necessary to estimate the unknown parameters for
weakly excited inputs in wind presence. Persistent
excited parts of the data must be chosen in order
to identify the unknown parameters based on the
optimization criterion such as the sensitivity of the

system output to the unknown parameters [6, 11].
In this paper, the combination of the OEM, LSM,
and constrained optimization will be used in the
presence of the wind and weakly exciting manoeu-
vres.

It must be considered that the time history match
is always a necessity, but not a sufficient condition for
the system identification [5]. An unrealistic value or
sign for some parameters can occur due to an inade-
quate model or existence of some un-excited modes of
the system. Inclusion of physical signs and bounds on
parameters, fixing some parameters to priori values
and interval estimation due to uncertainties must be
taken into consideration in the practical application of
parameter estimation methods based on the plant dy-
namics and the allowable range of parameters [5, 13].
These problems lead to a correlation or a lack of
identifiability, singularity of information matrix, un-
realizable parameters or large error covariances. It
means that all parameters cannot be estimated sepa-
rately while some of their linear combinations can be
estimated. Identifiability problems can be solved by
fixing parameters, a priori weighting, constraint opti-
mization, rank deficient solutions, input design and
model structure selection [5, 7]. Simulated Annealing
optimization algorithm (SAOA) (which imitates the
annealing process of metals) is used for the constrained
optimization algorithm [17]. By using the SAOA, the
probability of getting trapped in local optimums is
avoided by adding randomness to the acceptance of a
better direction in optimization procedure and initial
acceptance of direction with worse value of the cost
function. The optimization procedure can be restarted
from the obtained minimum with a high probability
of accepting worse values of the cost function.
Modelling the UAV’s dynamics of motion can be

performed on the basis of benchmark models, i.e. the
model, that has passed multilevel checks and refine-
ment of the physical experiments results in wind tun-
nels and flight tests. Since conducting a flight experi-
ment is costly, for the development of identification
algorithms, it is necessary to perform the simulation
of the motion and take into account the noise and dis-
placements of all sensors [3]. Then, the identification
algorithms that have been tested for such models are
recognized as reliable and suitable for a practical ap-
plication. Therefore, linear models are generated for
the nonlinear simulation of the Aerosonde, Skywalker
X8 and a Zagi UAVs [18, 19]. The suggested methods
are implemented and validated for the linear stan-
dard models to estimate the aerodynamic parameters.
Next, the combination of these methods are applied
for estimating the aerodynamic coefficients of Sky-
walker X8 flying wing (SX8FW) from real flight-test
data.
Aerodynamics coefficients of the SX8FW were cal-

culated theoretically in [19]. In this paper, its aerody-
namic coefficients are estimated based on flight-test
data and compared with theoretical coefficients of the
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Parameter ZFW SX8FW
Mass m kg 1.56 4.5
Moment of inertia Jx kg m2 0.1147 0.45
Moment of inertia Jy kg m2 0.0576 0.325
Moment of inertia Jz kg m2 0.1712 0.75
Moment of inertia Jxz kg m2 0.0015 0.06
Wing area S m2 0.2589 0.75
Wing span b m 1.4224 2.12
Mean aerodynamic chord c m 0.3302 0.3571
Propeller area Sprop m2 0.0314 0.1018
Air density % kg/m3 1.2682 1.2682
Motor constant Kmotor – 20 40
Propeller aerodynamic coefficient Cprop – 1 0.5

Table 1. Airframe parameters for the ZFW and SX8FW.

Figure 2. SX8FW (with the mini autopilot developed
in at the National Aerospace University (KhAI)).

SX8FW and the Zagi flying wing (ZFW). A special
case of a parametric identification is a so-called stiff
system identification [3]. The presence of the fast
and slow modes in such systems creates this feature,
which leads to a divergence of identification algorithms.
In [3], aerodynamic parameters for a longitudinal mo-
tion of the DHC-2 “Beaver” aircraft were estimated
with the LSM and Kalman filter in the computer
simulation environment. Practically, it is not pos-
sible to use the LSM due to the measurement and
process noise. In addition, it is difficult to tune the
Kalman filter. Therefore, this study proposes a prac-
tical approach to apply deterministic equations for
the FW motion and OEM for estimating aerodynamic
parameters from real flight-test data.

The problem is defined in the second section. OEM
and identifiability problems of aerodynamic coeffi-
cients are discussed in the third section. Fourth sec-
tion presents data co-linearity and its solutions for a
lateral acceleration regression. All aerodynamic coeffi-
cients for the lateral dynamics are estimated with five
different approaches in the fifth section. The conclu-
sion and some suggestions for future work are given
in the last section.

2. Problem statement
It is necessary to develop an identification procedure
to estimate aerodynamic parameters of the SX8FW.
This procedure needs to rely on the results of the flight
experiments in the presence of wind and measurement
noises. The measurements of Angular rates and lin-

Figure 3. The ZFW UAV [18].

ear acceleration are measured with MEMS sensors,
while the longitudinal and lateral ground velocities
are measured by a GPS receiver. In addition, the
ground velocity and Euler angles are calculated with
an inertial measurement unit of a mini autopilot. Air-
speed is measured with the airspeed sensor at the
pivot location, which is installed in front of the UAV.
The SX8FW and the ZFW are similar flying wings
(FW). Therefore, the ZFW is chosen for comparison.
Corresponding airframe parameters are shown in Fig-
ures 2 and 3, Table 1 respectively [18, 19]. These
FW belong to mini UAVs [20]. The SX8FW uses
the mini autopilot AP-AVIA, which was developed
at the National Aerospace University named after N.
Zhukovsky (KhAI) [21, 22].
The errors of the AP-AVIA autopilot sensors are

presented in work [22]. The frequency of the data
recording can be 20 Hz (saved to an SD card by the
autopilot) or 5 Hz (saved to a log file by the ground
control station).
The study of the influence of the sensors accuracy

on the UAV dynamic model identification is not car-
ried out in detail since the accuracy of angles, angu-
lar velocities, and linear velocities seems to be suffi-
cient for solving this problem. However, the standard
deviations of these parameters were higher in flight
due to the vibrations of the UAV engine and struc-
ture.
Body-axis and wind-axis reference frames for the
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Figure 4. Body-axis and wind-axis reference frames of the UAV.

UAV are shown in Figure 4. The motion of the FW
is controlled by elevons, which are moved by the au-
tomatic control system. A differentially angular de-
flection of the right (δer) and left (δel) elevons has
the same effect as aileron (δA) and a commonly angu-
lar deflection of them has the same effect as elevator
(δE) [18]: [

δE
δA

]
=
[
1 1
1 −1

] [
δer
δel

]
. (1)

Nonlinear dynamical equations of a motion in the
presence of the wind can be written as [23]:

[V ′A]B = fB–aero(. . .) + fB–thrust(δT )
m(t) +HB

I gI

− ωB × [VI ]B ,

dωB
dt = I−1

B ×
(
mB–aero(. . .) +mB–thrust(δT )

− ωB × IbωB
)
,

dΘ
dt = LEBωB , (2)

where fB–aero = fB–aero(|VA|, α−αW , β−βW , ωB , δA,
δE , δR), fB–thrust, mB–aero = mB–aero(|V |A, α − αW ,
β − βW , ωB , δA, δE , δR), mB–thrust are aerodynamic
and thrust forces and moments in the UAV body
frame, α, β are angles of attack and side slip, αW ,
βW are angles of attack and side slip due to wind in
the inertial frame, VA, VI are airspeed and ground
speed, ωB is angular velocity vector; δA, δE , δR, δT
are control signals for aileron, elevator, rudder and
thrust side slip angle due to wind, gI is the gravity
vector in the inertial frame; IB is matrix of inertial
moments, Θ is vector of the Euler angles, HB

I and LEB
are the corresponding rotation matrices. It means that
aerodynamic forces and moments depend on airspeed

where

VA = VI −W =

v1
v2
v3


I

−

W1
W2
W3


I

,

[VA]B =

uAvA
wA

 = HB
I VA −HB

I W,

|VA|βA
αA

 =


√
u2
A + v2

A + w2
A

sin−1 vA
VA

tan−1 wA
uA

 , (3)

where W is the wind vector in the inertial frame. The
linearized lateral equations of motion, including the
effect of the wind gusts, are:

∆xLatB =
[
∆v ∆p ∆r ∆φ

]T
,

∆uLat = ∆δA, ∆wLat = ∆vW ,
∆x′LatB = ALat∆xLatB +BLat∆uLat + ELat∆wLat,

∆yLatB = CLat∆xLatB +DLat∆uLat + FLat∆wLat,
(4)

where matrices ALat, BLat ELat are

ALat =


Yv Lv Nv + YvNv′ 0

Lp + w0 Lp Np + (Yp + w0)Nv′ 1
Yr − u0 Lr Nr + (Yr − u0)Nv′ − sin θ0
gI cos θ0 Lφ 0 0


T

,

BLat =


YδA
LδA

NδA + YδANv′

0

 ,

ELat =


−ALat(1, 1)
−ALat(2, 1)
−ALat(3, 1)

0

 =


−Yv
−Lv

−(Nv + YvNv′)
0


(5)
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and matrices CLat, DLat FLat are

CLat =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
DLat = ELat =

[
0 0 0 0

]T
. (6)

It must be taken into account that the velocity com-
ponents u, v, w in the state equations are computed
at the centre of gravity. Therefore, all quantities in
the state as well as observation equations should be
defined with respect to the centre of gravity. Although
the aircraft rates and the roll and pitch attitudes are
not affected by the location of the centre of gravity,
the measurements of linear accelerations and velocity
components are influenced by the distance between
the centre of gravity and the sensor position. The
airspeed is measured at the pivot location which is in-
stalled in front of the UAV. It must be considered that
the airspeed is measured almost along the x-axis, so
the normal and lateral components of the wind are not
observable and these components only affect the mea-
sured normal and lateral accelerations. However, the
amplitude and angle of the wind in inertial frame are
not changed rapidly; therefore, the UAV flies in four
directions at the beginning of the flight to estimate
the amplitude and angle of the wind. The amplitude
and angle of the wind are practically used during the
flight to compensate the effect of the wind. In other
words, the lateral wind is estimated in advance. The
airspeed components along the body frame axis at the
sensor location are given by [5]

us = u− rys + qzs,

vs = v − pzs + rxs,

ws = w − qxs + pys, (7)

where
[
xs ys zs

]T is the sensor location in the body
frame. In addition, sometimes, linear accelerometers
are not mounted exactly at the centre of gravity. The
accelerations at the centre of gravity can be derived
from the measured accelerations at the sensor location
using the following equations:

ax = axs + (q2 + r2)xs − (pq − r′)ys − (pr + q′)zs,
ay = ays − (pq + r′)xs + (r2 + p2)ys − (qr − p′)zs,
az = azs − (pr − q′)xs − (qr + p′)ys + (p2 + q2)zs,

(8)
where ax, ay, az are the accelerations at the cen-
tre of gravity, axs, ays, azs the accelerations at the
accelerometer location and

[
xs ys ys

]T the ac-
celerometer location in the body frame. Therefore

ax = Xv(u− uW ) +Xpp+Xrr +XδEδE +XT δT ,

ay = Yv(v − vW ) + Ypp+ Yrr + YδAδA,

az = Zv(w − wW ) + Zpp+ Zrr + ZδEδE + ZT δT .
(9)

It must be noted that there is no rudder control surface
in the FW and in most cases, Yp amd Yr are assumed
to be zero.

3. OEM and identifiability
problem

For a practical use in the aircraft parameter es-
timation, no process noise is considered in the
maximum-likelihood algorithm. Therefore, the practi-
cal maximum-likelihood estimation algorithm can be
developed for the state space model with a discrete
measurement model in a discrete form. In case of no
process noise, the negative log-likelihood function is
formulated as follows [7]:

J(Θ) = 1
2

N∑
k=1

eT (k)R−1(k,Θ)e(k) + N

2 ln|R(k,Θ)|,

R(k,Θ) = E{e(k)eT (k)}, (10)

where e(k) = y(k) − ŷ(k, Θ̂) is the innovation error
between measurements and model outputs. In the
expression for J(Θ), it is assumed that the unknowns
are the aircraft aerodynamic parameters. Elements of
the R matrix and the initial conditions could also be
included among the unknowns, but it is preferred to
estimate them a priori as part of the data compatibility
checking in order to minimize the number of unknown
parameters [24]. If the measurement noise is assumed
to be Gaussian with zero mean, then

E{e(k)} = 0, E{e(k)eT (l)} = Rδkl (11)

The unknown R can be estimated by minimizing the
likelihood function with respect to R:

R̂ = 1
N

N∑
k=1

e(k)eT (k). (12)

After substituting the estimated R, the cost function
for the output error is obtained in the following way:

J(Θ) =
N∑
k=1

eT (k)R−1e(k). (13)

Using the approximation for the second-order gradient
of the cost function for the i-th iteration, the estimate
vector Θ̂i+1 is obtained from

Θ̂i+1 = Θ̂i + ∆Θ̂i+1,

∆Θ̂ = M−1
∑

k = 1NHT (k)R̂−1e(k), (14)

where

H(k) = ∂y(k)
∂Θ(k) ,

Hij(k) = ∂yi(k)
∂Θj(k) , i = 1, 2, . . . ,m, j = 1, 2, . . . , p,

(15)
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Figure 5. Block diagram for the output-error param-
eter estimator.

where m is the number of output signals and p is the
number of unknown parameters, and matrix M is the
approximation of the Fisher information matrix:

M =
∑

k = 1NHT (k)R̂−1H(k). (16)

In order to have stable estimates with respect to
a small deviation in the measurement data, it is nec-
essary for the sensitivity coefficients ∂Θ̂

∂y to be nil or
very small. Therefore, one criterion for the stability
of the estimations can be written as [6]:

J =
N∑
k=1

(∂Θ̂
∂y

)−1 ∂Θ̂
∂y

. (17)

The elements of the sensitivity matrix H can be com-
puted by solving sensitivity equations

d
dt

∂x

∂Θj
= ∂f

∂x

∂x

∂Θj
+ ∂f

∂Θj
,

∂y

∂Θj
= ∂h

∂x

∂x

∂Θj
+ ∂h

∂Θj
. (18)

Another way is to compute the sensitivities by a
numerical method. The simplest one is to use a finite
difference approximation. The accuracy of the param-
eters is given by the inverse of the information matrix.
As it was pointed out, the diagonal elements of the
matrix M form the Cramer-Rao lower bound of the
parameter variance.

Cramer-Rao bound sometimes does not accurately
reflect the true parameter variance. Incorrect assump-
tions about the measurement and process noise, mod-
elling errors and non-linearity can cause a the lower
bound and the actual parameter variance to differ [7].
This shows the importance of the accuracy and ade-
quacy of the mathematical dynamic model.
The maximum likelihood parameter estimation

method can be simplified when applied to a determin-
istic linear dynamic system. In this case, there is no
process noise. The block diagram for the output-error

Figure 6. Block diagram for the output-error param-
eter estimator with wind estimation.

Figure 7. Identification of the UAV and actuator
dynamic model.

parameter estimator is shown in Figure 5. Close-to-
constant wind disturbance and high frequency pro-
peller noise practically acts on the UAV in the flight.
It is possible to estimate the amplitude and direction
of the near-to-constant wind in the inertial frame with
the output error estimation algorithm (Figure 6). It
is worth noting that in this case, the actuator angular
deviation is not measured. Therefore, the dynamic
model of the UAV along with the actuator are iden-
tified together. Due to the rapidity of the actuator
dynamics relative to the UAV, this approximation is
acceptable (Figure 7).

The mathematical model in the state space,

ẋ(t) = A(Θ)x(t) +B(Θ)u(t),
y(t) = C(Θ)x(t) +D(Θ)u(t), (19)

is identifiable if and only if the rank of the Jacobian
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∂Q(Θ)
∂Θ equals p [6], where:

QT (Θ) =


DT (Θ)

[C(Θ)B(Θ)]T
[C(Θ)A(Θ)B(Θ)]T

...
[C(Θ)A2n−1(Θ)B(Θ)]T

 , (20)

where n is the length of the state vector and p is the
length of the parameter vector Θ.
Based on (19) and by using the OEM, all aero-

dynamic coefficients of the lateral dynamics for the
FW are identifiable and the identifiability matrix is a
50× 12 full rank matrix. It is possible to determine
the quantity of the identifiability for these parameters
based on the analysis of the singular values of the
identifiability matrix. Singular values of the identifi-
ability matrix for the lateral dynamics of the ZFW
have a very wide range from 0.14 to 1.7 · 1010. The
parameters, which correspond to the small singular
values of the identifiability matrix, are called poorly
identifiable parameters:

Clp ↔ 1.7 · 1010, Clβ ↔ 48.4,
Cnp ↔ 7.7 · 109, CnδA ↔ 16.9,
CYp ↔ 3.8 · 108, Cnr ↔ 12.9,
ClδA ↔ 1.6 · 107, CYδA ↔ 1.06,
Clnβ ↔ 3.1 · 104, Clr ↔ 0.54,

ClYβ ↔ 1.5 · 103, CYr ↔ 0.14. (21)

The set of singular values is divided in two subsets of
small and large values. It can be said that the parame-
ters Clβ , CnδA , Cnr , CYδA , Clr and CYr are the poorly
identifiable ones. Therefore, it is difficult to guarantee
the convergence of the parameter identification algo-
rithm even in the presence of the persistent exciting
input. However, there are usually co-linearity and
poorly exciting inputs in the closed loop flight tests
that further complicate the identification algorithm.

4. Co-linearity analysis
for lateral acceleration
regression

In order to demonstrate the detection of a co-linearity
and the biased estimation techniques to solve it, the
lateral data of the SX8FW were used.
Part of the UAV lateral response is illustrated in

Figure 8. Time histories of the control surface δA,
and four response variables v−vw, p, r and −aY after
removing their mean values are shown. They show
that aY depends mainly on δA and r terms, whereas
the contribution of the remaining parameters is very
small. In addition to the co-linearity, a low sensitivity
of several terms in the aerodynamic model equation
could also aggravate the estimation procedure and the
accuracy of the estimates.
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Figure 8. Time histories of lateral response variables.

Because of small changes in the input and output
variables, the equation for the lateral force is formu-
lated as

ay = Y0 + Yv(v − vw) + Ypp+ Yrr + YδAδA,

Yv = %S

2m

√
u2

0 + w2
0CYβ , Yp = %Va0Sb

4m CYp ,

Yr = %Va0Sb

4m CYr , YδA =
%V 2

a0
S

2m CYδA (22)

where u0 and w0 are longitudinal and vertical veloc-
ities in the body frame for trim conditions. Aero-
dynamic parameters Y0, Yv, Yp, Yr and YδA can be
estimated by using the LSM instead of the OEM.
The singular values of the information matrix and

the correlation matrix are investigated to detect and
assist the co-linearity. The singular values, condi-
tion indexes and correlation matrix of the measured
variables (without normalization) are presented in
Table 2. The singular values vary between 3.22 and
604.95 and there is one condition index greater than
50 that belongs to CYδA . But from the correlation
matrix, it is possible to obtain three linear depen-
dencies involving CYβ , CYp and CYr because elements
of the correlation matrix for these parameters are
greater than 0.7. Without a normalization, the con-
dition number, with respect to the inversion for the
information matrix (the ratio of the largest singular
value of the matrix to the smallest), equals to 187.8.
Large condition numbers indicate a nearly singular
matrix [5, 7, 25].

For further discussion and analysis, it will be more
convenient and necessary to deal with regressor vari-
ables, which are centred and scaled to a unit length.
Therefore, it is suitable to calculate singular values,
condition indexes and a correlation matrix for normal-
ized measured variables (Table 3). It is clear that the
condition number of the matrix for normalized data
is reduced from 187.8 to 9.05 and, perhaps, there is
a strongly linear dependency only between CYp and
CYδA . In most cases, Yp and Yr are assumed to be zero.
Therefore, they are deleted systematically from the re-
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Singular
value σj

Condition
index σmax

σj

Correlation Matrix
Y0 CYβ CYp CYr CYδA

Y0 244.87 2.47 1 -0.2511 0.1055 -0.3117 -0.5426
CYβ 604.95 1 -0.2511 1 -0.9217 0.972 0.5694
CYp 21.98 27.53 0.1055 -0.9217 1 -0.9425 -0.213
CYr 23.89 25.32 -0.3117 0.972 -0.9425 1 0.4613
CYδA 3.22 187.8 -0.5426 0.5694 -0.213 0.4613 1

Table 2. Detection and assessment of data co-linearity (without normalization).

Singular
value σj

Condition
index σmax

σj

Correlation Matrix
Y0 CYβ CYp CYr CYδA

Y0 62 3.95 1 -0.2778 -0.3073 -0.2967 -0.3862
CYβ 244.87 1 -0.2778 1 -0.5366 0.1108 -0.3966
CYp 46 5.32 -0.3073 -0.5366 1 -0.5821 0.7492
CYr 52.54 4.66 -0.2967 0.1108 -0.5821 1 -0.4039
CYδA 27 9.05 -0.3862 -0.3966 0.7492 -0.4039 1

Table 3. Detection and assessment of data co-linearity (with normalization).

gression of the lateral acceleration and, again, singular
values, condition indexes and correlation matrix are
calculated for remained parameters. In Table 4, aero-
dynamic coefficients are estimated for the following
six cases [5, 7, 25, 26]:
(1.) Principle components estimates (PCE): Using
only one parameter in the regression

(2.) PCE: deleting the aerodynamic parameters CYp
and CYr from the regression

(3.) PCE: deleting the aerodynamic parameter CYp
from the regression

(4.) Ordinary LSM (OLSM): all of the aerodynamic
parameters are used in the regression

(5.) Mixed estimates (ME): Using a priori values for
CYp and CYr

(6.) PCE: deleting the aerodynamic parameter CYδA
from the regression

Based on the condition index analysis, the relative
quality of estimation for these aerodynamic parame-
ters are as follows:

CYβ ↔ 1, Y0 ↔ 2, CYr ↔ 3,
CYp ↔ 4, CYδA ↔ 5. (23)

Equations (21) and (23) show that the relative quality
of estimation for ,CYβ , CYp and CYr is quite different
with the OEM and LSM based on the condition index
analysis. On the one hand, according to the LSM in
Case 1, there is no linear dependency, so estimated
parameters, in this case, can be interpreted as values
close to reality. On the other hand, if the estimated
parameters in the other cases are close or equal to
these values, they can be accepted as good estimates.
In the fourth case, with the ordinary LSM, the es-
timated parameters CYβ , CYp and CYr are different

from the first case with 57% , 20% and 7.7% respec-
tively. Parameter CYp is completely estimated with
a different sign in these cases. In the third case, with
removing CYp from the fourth regression, estimated
parameters CYβ , CYr and CYδA are different from the
first case with 49%, 14% and 1% respectively. And
in the second case, with removing CYp and CYr from
the fourth regression, estimated parameters CYβ and
CYδA are different from the first case with 15% and
0.2% respectively. In the fifth case, the parameters
CYp and CYr are fixed with the values from separate
regressions and are estimated from the other param-
eters using the mixed estimate method. Finally, the
parameter CYβ is removed from the regression and
the other parameters in the sixth case are estimated.
CYδA has the worst condition index, but there is a
strong correlation between the lateral acceleration and
this parameter. Therefore, the fit error is increased
more than twice with removing CYδA from the regres-
sion.
The parameter estimates for the lateral-force coef-

ficient from an ordinary linear regression, principal
components regression and mixed estimation are sum-
marized in Table 4. These estimates are compared
with the theoretically calculated aerodynamic param-
eters of the ZFW and SX8FW in the first and second
rows of Table 4. The use of the ordinary LSM can
result in non-physical values for parameter CYp and
a small value for CYβ . The principal components
estimates of these parameters are close to the sepa-
rately estimated parameters for CYβ and CYδA . The
mixed estimation with a priori values for CYp and
CYr also improves the parameter values. The esti-
mate of CYδA has approximately the same value for
all three techniques, which is the result of the very
high sensitivity of this parameter despite of its small
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Y0
(3σ)

CYβ
(3σ)

CYp
(3σ)

CYr
(3σ)

CYδA
(3σ)

Criteria

SX8FW 0 −0.1949 −0.1172 0.0959 −0.0696
ZFW 0 −0.07359 0 0 0
Case 1
PCE

0 −0.0033
(0.0002)

−0.2423
(0.0046)

−0.1914
(0.0045)

−0.2299
(0.0017)

Case 2
PCE

0
(0.0008)

−0.0028
(0.0002)

0 0 −0.2294
(0.0017)

0.0661

Case 3
PCE

0
(0.0008)

−0.0017
(0.0002)

0 −0.1645
(0.0046)

−0.2275
(0.0017)

0.0592

Case 4
OLSM

0
(0.0008)

−0.0014
(0.0002)

+0.1004
(0.0056)

−0.1547
(0.0046)

−0.2476
(0.0020)

0.0574

Case 5
ME

0
(0.0008)

−0.0024
(0.0002)

−0.2423 −0.1914 −0.1795
(0.0017)

0.0766

Case 6
PCE

0
(0.0008)

−0.0028
(0.0002)

−0.2676
(0.0047)

−0.2051
(0.0046)

0 0.1202

Table 4. Estimated aerodynamic coefficients and their 3σ deviations.
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Figure 9. Part of the time history match of the
lateral acceleration and its regressor prediction.

singular value. However, there is a high correlation be-
tween the lateral acceleration and the aileron control
signal.

As indicated by the last column in Table 4, the root
mean square fit error, given as the estimation error of
the lateral acceleration, is not significantly degraded
by the principal components estimates and mixed
estimation methods compared with the ordinary LSM.
It is concluded that it is possible to reduce the co-

linearity by removing the dependent parameters. In
order to obtain some feel for the importance of parame-
ters in (22), the estimated parameters in this equation
for the SX8FW are compared with the data for the
aerodynamic parameters of the ZFW and SX8FW in
Table 4. Parameters estimation errors are three times
larger than the standard deviation (3σ) shown in Ta-
ble 4. It is suggested, with ignoring CYp and CYr , to

use the results of Case 2 as good and accepted results
for the next uses. It can be noticed that estimated
values for the parameters CYβ and CYδAare different
from their theoretically calculated values.
The time history match of the lateral acceleration

and prediction of its regressor, Yv(v − vw) + YδAδA is
shown in Figure 9.

5. Estimation of aerodynamic
coefficients of the lateral
dynamics

Theoretical and Numerical values for the aerodynamic
parameters of the ZFW and SX8FW were given in [18,
19].These values are used as initial values for the
parameters in the optimization algorithms. With an
expert, it is possible to determine the accuracy and
range of the uncertainty of the theoretical value for
each parameter. Aerodynamic parameters Clβ and
Cnβ , which determine the static stability of the UAV,
are more accurate than the other parameters can be
theoretically calculated. However, there is a strong
correlation between the roll angular rate p and aileron
control signal δA that makes the co-linearity problem.
Therefore, it is preferable to cancel the co-linearity
problem because it negatively affects the estimates of
other parameters. These problems must be solved:
• To find physically acceptable estimates for param-
eters (a constrained optimization based on the ac-
curacy of theoretical values of the aerodynamic
parameters from expert).

• To solve the co-linearity problem by removing some
dependent variables with the principle component
estimate and mixed estimate methods in the con-
strained optimization algorithm.
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Parameters OEM-IAV
(3σ)

(SX8FW)

LSM-OEM-AC
(3σ)

Theoretical values
ZFW SX8FW

CYβ −0.0972
(11%)

−0.0008
(0.0029)

−0.0736 −0.1949

CYδA −0.0160
(23%)

−0.2477
(0.0070)

0 −0.0696

Clβ −0.0993
(2%)

−0.0068
(0.0094)

−0.0285 −0.0765

Clp −0.4669
(21%)

−0.4715
(0.0386)

−0.3209 −0.4018

Clr 0.1650
(57%)

0.0250
(0.0038)

0.3066 0.025

ClδA 0.1410
(2%)

0.0355
(0.0022)

0.1682 0.2987

Cnβ 0.0583
(2%)

0.0020
(0.0034)

0.0004 0.0403

Cnp −0.1721
(56%)

−0.0246
(0.0246)

−0.01297 −0.0247

Cnr −0.1216
(4%)

−0.0228
(0.0018)

−0.0043 −0.1252

CnδA −0.0635
(6%)

−0.0013
(0.0139)

−0.0032 −0.0076

Criteria 117.86 116.6849
σv 2.4826 2.5438
σp 0.0869 0.0918
σr 0.0838 0.0638
σϕ 0.106 0.1054
σaY 0.0597 0.0592

Table 5. Aerodynamic parameters estimates and their deviations for SX8FW.

These approaches are used to apply the optimization
methods for estimating the lateral aerodynamic pa-
rameters:
• OEM with only Modified Newton-Raphson or
Gauss-Newton method with Initial Analytical Val-
ues from SX8FW (OEM-IAV): Analytical values
of the aerodynamic parameters are used as initial
conditions and the Gauss-Newton method is used
to minimize the cost function for the unconstrained
optimization. There are two shortcomings of this
approach: 1. It is not able to find the global opti-
mum with the Gauss-Newton method. 2. It leads
to a large and unacceptable linear and angular ac-
celerations. This means that absolute values for the
time history of the right side of the dynamic equa-
tions are larger than the ones of the left side (for
example, absolute values of Lpp and Nrr greater
than the absolute values of p′ and r′). In this case,
covariances for all estimated parameters are lower
than 20%.

• The LSM for the lateral acceleration and the OEM

for lateral dynamic equations of motion with Ana-
lytic Constraints (LSM-OEM-AC): Analytical val-
ues of the aerodynamic parameters and their a
priori analytical uncertainties based on an expert
evaluation are used for the SAOA in constrained
optimization. For removing the co-linearity, Clr
and CnδA are assigned zero and for the order reduc-
tion, estimated values for CYβ and CYδA in lateral
acceleration regression are used in the constrained
optimization stage. Then Gauss-Newton method is
used to finalize the optimum values and covariances
of the estimated parameters.

• The OEM with the SAOA and Gauss-Newton
Methods with Measured Constraints (OEM-MC):
Putting upper or lower limits on the aerodynamic
parameters based on the linear and angular acceler-
ation for the constraint optimization. It is possible
to compute the mean square deviation for the vari-
ables v′, p′, r′ from the measurements v, p and r (it
means cov(Lpp) ≤ cov(p′) and cov(Nrr) ≤ cov(r′)).
The range of the changes of linear and angular accel-
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Parameters OEM-MC
(3σ)

LMS-OEM-MC
(3σ)

OEM-IAV
(3σ)

(ZFW)

Theoretical values
ZFW SX8FW

CYβ −0.0334
(0.0033)

−0.0022
(0.0035)

−0.0736
(1%)

−0.0736 −0.1949

CYδA −0.2089
(0.0100)

−0.2432
(0.0066)

−0.0
(0.007)

0 −0.0696

Clβ −0.0084
(0.0025)

−0.0054
(0.0081)

−0.0526
(1%)

−0.0285 −0.0765

Clp −0.2376
(0.0304)

−0.1586
(0.0167)

−0.3209
(1%)

−0.3209 −0.4018

Clr 0.0266
(0.0093)

0.0313
(0.0089)

0.1658
(1%)

0.3066 0.025

ClδA 0.0261
(0.0053)

0.0178
(0.0035)

0.1682
(1%)

0.1682 0.2987

Cnβ 0.0037
(0.0004)

0.0028
(0.0120)

0.0006
(33%)

0.0004 0.0403

Cnp −0.0881
(0.0363)

−0.0899
(0.0191)

−0.0131
(5%)

−0.01297 −0.0247

Cnr −0.0301
(0.0024)

−0.0329
(0.0044)

−0.0041
(80%)

−0.0043 −0.1252

CnδA −0.0009
(0.0012)

0.0004
(0.0092)

−0.0000
(0.0005)

−0.0032 −0.0076

Criteria 117.447 117.1416 126.98
σv 2.4837 2.4759 2.6556
σp 0.0921 0.0918 0.0924
σr 0.0651 0.065 0.0819
σϕ 0.1055 0.1052 0.1095
σaY 0.0755 0.0756 0.0769

Table 6. Aerodynamic parameters estimates and their deviations for SX8FW.

erations is an effective rule to validate the estimated
parameters. It is possible to find an upper limit for
absolute values of the parameters. Then, the SAOA
for constrained optimization is used with bounds of
this approach. And finally, Gauss-Newton method
is applied to find final optimum parameters and
their covariances.

• The LSM for the lateral acceleration and the OEM
for the lateral dynamic equations of motion with
Measured Constraints (LMS+OEM+MC): In this
case, early estimated values for Crβ and CrδA by
the LSM from the lateral acceleration are used in
the OEM at the second stage. In this case, for the
optimization, at first, the parameters CnδA , Cnp and
Clp are also fixed to remove the data co-linearity.
Then, the parameters Cnp and Clp are made free
in the optimization algorithm. And finally, Gauss-
Newton method is applied to find final optimum
parameters and their covariances. It can be seen
that in this case, covariances of the parameters
CnδA , CYβ , Clβ and Cnβ are very large and they

are not estimated accurately.
• The OEMwith the only Gauss-Newton method with

Initial Analytical Values from the ZFW (OEM-IAV).
From (21), for weakly identifiable parameters, CYδA
and CnδA are put to zero. These parameters have
small contributions on outputs and it is possible to
use zero value for them. The weakly identifiable
parameters Clv and Clr are set to values between
analytical ones for the ZFW and SX8FW. IAV-OEM
is used with these conditions and initial conditions
based on analytical values for other parameters of
the ZFW.

In Tables 5 and 6, estimation parameters with differ-
ent suggested approaches are given. Output signals
for mathematical models with estimated parameters
of all of the approaches are given in Figures 10–14.
Identification quality indicators and properties of es-
timated aerodynamic parameters with five different
approaches are discussed below:

• The largest value for the cost function is obtained
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Figure 10. Flight data and responses of the model
with the OEM-IAV parameters with initial condition
from analytical aerodynamic parameters of SX8FW.
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Figure 11. Flight data and responses of the model
with the LSM-OEM-AC parameters.

with the OEM-IAV (ZFW) approach. For this ap-
proach, the time history match, especially for the
yaw angular rate and roll angle, is reduced. The esti-
mated aerodynamic coefficients with this approach
are the most similar to the ZFW analytical ones.

• There is a tendency to increase the parameter Clp
in the optimization process due to the correlation
between the roll angular rate, p(t) and the aileron
control signals, δA(t). This tendency can be seen es-
pecially in the LSM-OEM-AC approach. Therefore,
this tendency can be controlled with the constrained
optimization on the basis of the dispersion of the
measured linear and approximately calculated angu-
lar accelerations about their mean values (OEM-MC
and LMS+OEM+MC). However, theoretical val-
ues of the aerodynamic parameters, especially for
Clp and Cnr , are large. Although the lowest value
for the cost function belongs to this case (LSM-
OEM-AC), the estimated values for the coefficients
separately are not consistent with the bounds of
the measured-signals-based LSM for angular and
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Figure 12. Flight data and responses of the model
with the OEM-MC parameters.

900 1000 1100 1200 1300 1400 1500 1600 1700
-20

0

20

v 
[m

/s
ec

]
 

 

Flight-Test Data

Mathematical Model

900 1000 1100 1200 1300 1400 1500 1600 1700
-1

0

1

p 
[r

ad
/s

ec
.]

900 1000 1100 1200 1300 1400 1500 1600 1700
-0.5

0

0.5

r 
[r

ad
/s

ec
.]

900 1000 1100 1200 1300 1400 1500 1600 1700
-1

0

1

 
[r

ad
]

900 1000 1100 1200 1300 1400 1500 1600 1700
-1

0

1

a Y
 [

m
/s

2 ]

Time [sec.]

Figure 13. Flight data and responses of the model
with the LSM-OEM-MC parameters.

linear accelerations. Results of the LSM-OEM-AC
and OEM-IAV cases are shown in Table 5.

• Due to the slight change of the amplitude and di-
rection of the wind in the inertial frame and distur-
bances due to the actuator (because the actuator
worked without the position feedback), there is not
a complete history matching between mathematical
models’ outputs to control signals and real flight-
test measurements.

• A long time history of flight-test data can be used
for an estimation of the parameters, which produce
the DC gains of the different transfer functions.

• It must be noticed that due to the lack of the iden-
tifiability and the linear dependency between some
flight variables, it is not possible to estimate all of
the aerodynamic parameters. Depending on the
degree of identifiability, the linear dependency be-
tween the variables is eliminated in the constrained
optimization step and then the other aerodynamic
parameters are estimated.

• It is suggested to use analytical values for some
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Figure 14. Flight data and responses of the model
with the OEM-IAV parameters with initial condi-
tion from analytical aerodynamic parameters of the
ZFW.

Figure 15. Typical model prediction and fitting
properties as a function of its number of parameters.

parameters, which make the DC gains, to remove
the co-linearity problem and estimate the remaining
parameters. Because, theoretically, these static
stability derivatives are calculated more accurately
than the damping and primary control derivatives.
However, there are significant differences between
estimated and theoretical ones regarding the LSM
and OEM.

• It is visible that the roll rate is very noisy due to
vibrations, especially from the propeller thrust.

• It is worth mentioning that the linear model predicts
the dynamic behaviour of the SX8FW acceptably.
In order to determine the structure and the number
of parameters for the mathematical model, it must
be considered that usually fitting error is decreased
monotonically with the number of the parameters,
but prediction quality of the model is not increased
monotonically (Figure 15) [27].

• For the purposes of the prediction, the co-linearity
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Figure 16. Prediction capability of the model with
estimated parameters for the OEM-AIV (with initial
condition from analytical aerodynamic parameters of
SX8FW case) and for additional flight-test data.

does not cause a serious problem. It must be men-
tioned that mathematical models with different
groups of estimated parameters have a good predic-
tion capability. This shows the accuracy and ade-
quacy of the mathematical dynamic model. How-
ever, there are differences between estimated pa-
rameters and analytical ones for the LSM-OEM-AC
and LSM-OEM-MC and covariances of estimated
parameters are large in comparison with the OEM-
IAV approaches. However, it is possible to achieve
physically meaningful estimations and low estima-
tion covariances by allowing a tolerance to some
increase of the cost function.

• Physical meaning, small estimation covariances and
the dynamic model prediction capability are used
for the model validation as effective indicators. In
Figure 16, the accepted prediction capability of
the model using the estimated parameters with the
OEM-IAV case (initial condition from analytical
aerodynamic parameters of SX8FW) is shown.

• The OEM is a nonlinear optimization method. It is
not possible to prove the achievement of the global
minimum for it especially when there are many pa-
rameters. Therefore, it is helpful to use the LSM in
the first stage for the lateral acceleration to decrease
the number of parameters in the optimization stage
(use of the OEM). However, LSM did not give esti-
mates close to analytical parameters due to noisy
measurements.

• In the OEM-IAV approach (with the initial con-
dition from analytical aerodynamic parameters of
SX8FW) estimated values of CYβ , CYδA and CnδA
are close to the ZFW aerodynamics and there
are significant differences between estimated val-
ues from the LSM for the lateral acceleration. The
OEM gave better results than the LSM, because
it uses the multi-dimensional equations of motion
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and more effectively estimates parameters in the
presence of the measurements noise. Aerodynamic
coefficients, Clβ , Clp , Cnβ and Cnr are estimated
close to the SX8FW analytical ones. Estimated
values for Cnp and CnδA are not matched with ana-
lytical ones for the SX8FW and ZFW. Estimated
parameter, Clr has the value between the SX8FW
and ZFW one.

• In the OEM-IAV approach (with the initial con-
dition from analytical aerodynamic parameters of
the ZFW), estimated values except for Clβ and Clr
are very close to the ZFW aerodynamic parameters
with small covariances. For this approach, there
are also significant differences between estimated
values from the LSM for the lateral acceleration
.Based on a singular value analysis, it is expected
that parameters CYδA , Clβ , CnδA and Clr are badly
estimated.

• The LSM-OEM-AC approach could find the small-
est value for the cost function, because for this
approach, large bound limits are used for the con-
straint optimization.

As it is previously stated, for the purposes of predic-
tion, the co-linearity does not cause a serious problem.
However, for the purposes of the estimation of the
parameters, biased estimation methods can be used.
The increase in the number of flights alone does not
lead to a significant increase in accuracy, since flights
are similar in manoeuvre and, accordingly, in the na-
ture of the input signal. The number of measurements
in the experiments depends on the frequency of the
data recording (20Hz) and flight time (10–40 min-
utes). According to statistical properties, the amount
of data is sufficient for an identification, but the spec-
tral properties of the input signals depend little on
the flight time.

6. Conclusion
The Aerodynamic coefficients of the lateral dynamics
for the SX8FW were estimated from flight-test data
with a co-linearity problem based on the combination
of constrained optimization, LSM, and OEM. And
several approaches, such as parameter fixing, princi-
ple components estimation and a mixed estimation
with the LSM and the OEM in constrained optimiza-
tion, were applied to solve the co-linearity problem
for estimating aerodynamic parameters. The data co-
linearity leads to a not repeated and unstable estima-
tion of the parameters with large covariances. There-
fore, it is necessary to accept some biased estimations
and remove the correlation between some variables
by fixing or omitting the corresponding parameters
to solve the co-linearity problem and estimate the
other aerodynamic parameters correctly. As a quality
indicator of the estimation to validate the estimated
parameters, the physical meanings for aerodynamics
parameters, theoretical values of the parameters for

the FW being studied and a similar one, small covari-
ances for the estimates, repeated and stable estimates
for parameters, and prediction capabilities of the esti-
mated dynamic model for other flight-test data were
used. With additional and persistent flight-test data;
it is possible to remove the data co-linearity and near-
singularity problems. In addition, the time-varying
model for the wind in an inertial frame can be used to
improve the model adequacy. The approaches consid-
ered for the SX8FW have shown satisfactory results
and in the future, we propose to use them for other
types of aircrafts, including vertical take off and land-
ing vehicles. The work will continue in the direction
of developing a real-time identification and control
system tuning methods for such UAVs and designing
a safe and optimal persistent exciting manoeuvre to
remove the co-linearity problem in the UAV system
identification. The developed models will later be
used to synthesize a robust control and testing in real
flights. The modification of the criterion function in
the identification process based on the a priori infor-
mation is suggested to solve the linear dependency
problem.
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