
DOI:10.14311/AP.2019.59.0518
Acta Polytechnica 59(5):518–526, 2019 © Czech Technical University in Prague, 2019

available online at https://ojs.cvut.cz/ojs/index.php/ap

MODEL-BASED SECURITY ANALYSIS OF FPGA DESIGNS
THROUGH REINFORCEMENT LEARNING

Michael Vetter

University of West Bohemia, Faculty of Applied Sciences, Department of Computer Science and Engineering,
Technická 8, 301 00 Plzeň, Czech Republic
correspondence: michaelvetter@protonmail.com

Abstract. Finding potential security weaknesses in any complex IT system is an important and
often challenging task best started in the early stages of the development process. We present a
method that transforms this task for FPGA designs into a reinforcement learning (RL) problem. This
paper introduces a method to generate a Markov Decision Process based RL model from a formal,
high-level system description (formulated in the domain-specific language) of the system under review
and different, quantified assumptions about the system’s security. Probabilistic transitions and the
reward function can be used to model the varying resilience of different elements against attacks and
the capabilities of an attacker. This information is then used to determine a plausible data exfiltration
strategy. An example with multiple scenarios illustrates the workflow. A discussion of supplementary
techniques like hierarchical learning and deep neural networks concludes this paper.

Keywords: FPGA, IT security, model-driven design, reinforcement learning, machine learning.

1. Introduction

Securing any (non-trivial) computer system against
malicious actors is a challenging task. The defender
has to identify and protect all possible paths of entry
while an attacker has to find only one feasible way to
breach the system’s security properties. As a system
matures, new threats can arise and the strength of
defence mechanisms may erode. Current threat mod-
elling approaches are often informal, provide little au-
tomation and have a tendency to neglect the defence
in-depth aspect of a design by focusing on the attack
surface. Attack trees [1] are a common method to
model an attacker’s options but their creation is often
tedious and they provide little information about the
most efficient way to breach a system. We address this
problem for FPGA [2] based designs through a com-
bination of a text-based Domain Specific Language
(DSL) for the design description and a quantified as-
sessment of the security properties. This description is
automatically transformed into a processable Markov
Decision Process (MDP). An agent is trained on this
MDP to exfiltrate all data stored within an FPGA
design using the most efficient sequence of predefined
actions. This task is performed by well-established
reinforcement learning (RL) [3] [4] algorithms. The
result of this analysis is one or more attack sequences
that provide the user with insights about an attacker’s
strategy under the described circumstances. We illus-
trate the feasibility of this approach through a series of
experiments, assess its constraints and conclude with
a discussion about our model’s limits and possible
methods to lift them.

2. Related Work
The approach described in this work operates on the
intersection between IT security, model-driven devel-
opment (MDD) and machine learning.
Model-driven development [5] is a common tech-

nique to master the complexity of modern systems.
General purpose languages like SysML [6] and AADL
[7] flatten the learning curve, advance best practices
and prevent vendor lock-in, but, to the authors knowl-
edge, no standardized support for a security analysis
exists in either of these languages. Proposals like [8]
for AADL have been made but not widely adopted.
Threat Modelling [9] is often performed informally
using tools as simple as paper, whiteboards or general
purpose diagram software. Dedicated threat modelling
tools, including Microsoft Threat Modelling Tool [10]
and OWASP Threat Dragon [11], provide a suitable
structure and user interface but little automation.
Machine learning has seen a boom in recent years,

mainly powered by a trifecta of big data, parallel
data processing power provided by GPUs (Graphics
Processing Unit) and new ML architectures that uti-
lize both. [12] discusses the application of machine
learning for a malware detection from a practitioner’s
perspective.[13] presents both a comprehensive review
of the scientific literature and a number of research
papers with applications ranging from the detection
of malware to automatically generated penetration
test plans. Machine Learning has also been used to
generate malicious inputs with complexity beyond the
conventional fuzzing [14] methods. [15] presents a
Generative Adversarial Networks (GAN) [16] based
attack against a fingerprint scanner. In [17], a similar
approach is used against the computer vision system
of an electric vehicle. In [18], the authors use Markov

518

https://doi.org/10.14311/AP.2019.59.0518
https://ojs.cvut.cz/ojs/index.php/ap

vol. 59 no. 5/2019 Security analysis of FPGAs designs through reinforcement learning

Decision Processes to craft stealthy attack sequences
against a cyber-physical system. MDPs can be used
for defensive purposes e.g. to detect attacks [19]. The
Cyber Grand Challenge 2016 [20] demonstrated that
modern computer programs are, in principle, able to
detect, exploit and patch previously unknown vul-
nerabilities in other cyber systems without a human
intervention. It is generally assumed that most re-
search in this field is done by military contractors and
intelligence agencies and, therefore, a secret [21] Ad-
vances in other, more visible, domains like games can
provide us with valuable insights about the capabilities
and limits of current machine learning systems. Mile-
stones for this progress include Chess with Deep Blue
(Chess) [22], Jeopardy with Watson [23], Pacman[24]
and diverse ATARI 2600 arcade games [25], the board
game GO [26], as well as the real-time strategy game
Starcraft II [27] and Quake III [28]. Unresolved, but
intensely researched problems, like autonomous driv-
ing, indicate the limits of the current technology when
the problem space becomes too large.

Advances in other fields of statistics have provided
us with methods to determinate casual effects [29][30]
in the absence of randomized experiments and the
exploration of counterfactual scenarios. Progress in
probabilistic programming [31] [32] have eased the
usage of Bayesian methods to e.g. incorporate knowl-
edge about a system as informed priors.

We can conclude that the advancement of machine
learning in recent years can and has been used to
improve both attacks and defences of existing cyber
physical systems. The machine learning tools available
today must be tailored to the application at hand and
used with a careful knowledge of their limits. To
the author’s knowledge, no such system exists that
uses reinforcement learning to determine a systems
vulnerabilities in the analysis and design phase.

3. The descriptive model of the
FPGA design

It is common wisdom that security problems should
best be solved at the early stages of the development
process, ideally before any hardware is built or code
written. This approach requires a suitable model of
the system to be created. The FPGASECML meta-
model (Figure 1) defines several components that can
be instantiated and parameterized for this purpose.
FPGAModules represent the computational parts of
the design. They come in two different manifestations:
Processing Blocks store and process data while IO
Blocks provide an additional connection to the outside
world. FPGAModules utilize Slots to perform their
tasks. Slots represent disjunctive sets of FPGA primi-
tives like Configurable Logic Blocks and Embedded
RAM. Each Slot can be used by only one FPGAMod-
ule at a time and all FPGAModules must use the same
predefined Slot every time. Communication Networks
represent the communication infrastructure between
the Slots. They are directed graphs with the Slots

as nodes and the possible data flow between them is
represented by the edges. Each change in the Slot
utilization (partial runtime reconfiguration) is repre-
sented by a Reconfiguration Event. Each Reconfigu-
ration Event has a set of FPGAModules that replace
the FPGAModule in their respective Slot. The only
mandatory event evInit marks the initial configuration
of the FPGA and must provide one FPGAModule for
each Slot.

4. The MDP-Representation of
the FPGA design

Our model-to-model generator translates each valid
FPGASECML description into a computable Markov
Decision Processes model. This section presents a
short introduction into MDPs in general, and the sim-
plifications made to create a suitable representation of
the problem at hand. We further discuss the different
components - state, action, reward and terminal states
- of our model (Figure 2) and its implementation.

4.1. Scope and constraints of the model
We assume that the attacker has only one goal: the
exfiltration of all data stored within the FPGA. We
further assume that the agent has a full access to
all peripheral devices including those containing the
FPGAs configuration. Each action in the MDP-model
represents a whole class of attacks, many (low-level)
operations might be necessary to execute each of these
actions in a real-world case. The model does not sup-
port side effects of attacks like a damaged configura-
tion. We further grant the attacker total knowledge
over the systems state, and this state depends solely
on the actions of the attacker. Methods to address
these constraints are presented later.

4.2. Generic components of Markov
Decision Processes

Each State of the Markov Decision Processes (MDP)
contains all the information necessary to determine
the next state as well as the agent’s reward after an
action is taken. Each MDP has one start state and at
least one terminal state. The agent can choose from a
finite set of actions to change the state of the system.
Executing this action results in the transition from
the state s to state s′. All actions are atomic and
require the same amount of time. The probability
Pa(s, s′) specifies the likelihood that an action a in
the state s leads to a transition into the state s′. The
reward Ra(s, s′) informs the agent which transitions
are desirable and which are not. The agent receives
its reward immediately after the transition into s′.
Rewards can also be negative (punishments) or zero.
γ or Gamma is a discount factor for future rewards
(we use the traditional value of γ = 0.7).

519

Michael Vetter Acta Polytechnica

Figure 1. FPGA primitives (bottom layer) and their abstract representation in FPGASECML (top layer).

Figure 2. Transformation flow from the FPGASECML to the BURLAP based reinforcement learning model.

4.3. The domain-specific Markov
Decision Process

This section describes how the FPGASECML meta-
model is translated into the required MDP compo-
nents.

4.3.1. State
The state contains the current configuration of the
FPGA, which FPGAModule is under the control of
the attacker and which Slot contains data already
exfiltrated from another FPGAModule (chain exfiltra-
tion). The state further encodes which FPGAModules
storage has been tampered with and which data has
already been leaked into the outside world. All the
information are stored in integer or Boolean variables.
The FPGA starts in its initial configuration (as de-
fined by evInit) and all FPGAModules untampered
with. Terminal states are, by default, all states where
the agent has exfiltrated the data of each FPGAMod-
ule into the outside world. The code generator does

not validate whether the agent can reach a terminal
state.

4.3.2. Actions
The agent can invoke one of the (pre-defined) actions
to get and extend control over the system. Possi-
ble actions include the reconfiguration of the system,
tampering with a distinct FPGAModule (inside the
FPGA or in its storage element) and the extraction
of data from a tampered-with FPGAModule. The
attacker can further transfer these extracted data to
other Slots or the outside world (if the data is in an
IOBlock that the attacker has already tampered with.)
The MDP moves into the new state if the action is
successful and remains in the current state (s′ = s)
otherwise.

4.3.3. Reward
The agent receives a positive reward for reaching a
terminal state and either none or a negative reward

520

vol. 59 no. 5/2019 Security analysis of FPGAs designs through reinforcement learning

(punishment) for every other step. This penalty en-
courages the agent to use shorter sequences of low-cost
actions and constraints the search space. It can be the
same for all actions but it is also possible to penalize
the usage of distinct actions.

4.4. Reinforcement Learning Scenarios
Multiple experiments with different parameters must
be performed for a meaningful analysis. Each scenario
is a combination of MDP parameters like the reward,
the success likelihood and costs of actions as well as a
hyperparameter like the learning rate. FPGASECML
allows the definition of scenarios that allow the inde-
pendent definition and evaluation of these parameters.
All scenarios share a set of common parameter like γ
and the exploration-exploitation tradeoff ε set. The
example in the next section illustrates the application
of scenarios.

4.5. Implementation
Our proof of concept implementation transforms, as
mentioned earlier, any valid FPGASECML-model into
Java code. This generated code is meant to be linked
against the Brown-UMBC reinforcement learning and
Planning (BURLAP) library [33], a JAVA framework
that provides a generic reinforcement learning func-
tionality. Where the algorithmic flexibility provided
by BURLAP is not required, a reimplementation in
e.g., C++,Rust or Go should lead to a better perfor-
mance. The memory consumption could be reduced
through an optimized state encoding at the expense of
readability and extensible - the implementation used
here is optimized for a simple code generation process.

5. Example
An FPGA design consists of three Slots with two FPG-
AModules each (Figure 3). FPGAModule A is the
only IO Block. The run ends the data of all six Mod-
ules (A-F) is exfiltrated. The Q-learning algorithm is
used to find the best sequence of actions. The heap
memory of the JAVA virtual machine (JVM) had to be
extended to up to 6 GB to accommodate the Qtable as
well as the telemetric data. Each scenario is executed
(ran) once for each epsilon (0.1, 0.05 and 0.25 in our
example). Each run consists of 3 million episodes, and,
in each episode, the agent starts at the initial state
and ends in a terminal state. Histograms (truncated
to the right) are used to compare the agent’s learning
performance for the different epsilon and scenarios.

The FPGASECML-model, as well as the generated
JAVA code and reports, for this example, can be found
in the accompanying files.

5.1. Scenario 1: Baseline
Scenario 1 establishes a baseline of the model through
a deterministic MDP (the success rate of every action
is 1) and a fixed reward/punishment assignment. The
agent gets a reward of 200.000 for reaching a terminal

state and a punishment of -1.000 for every other ac-
tion. All three runs return a minimal solution with 24
actions, the histogram (Figure 5) of all three actions
shows that the epsilon of 0.1 has the most episodes
with the minimal steps followed by 0.05 (low explo-
ration rate requires more steps to find a solution) and
0.25 (too much exploration hinders the efficient ex-
ploitation of the available data.) The learning process
starts with episodes well over 2.000 steps (Figure 4)
and provides better results as the Qtable gets filled.
For the epsilon of 0.1, the first minimal solution is
found after just 303.323 Episodes - indicating that
the agent has either found the best possible solution
or is stuck in a local minimum with little chances to
break out. It is also notable that all three solutions
make an extensive use of the tamper−bitstream ac-
tion, but what if this action is unlikely to succeed or
prohibitively expensive?

5.2. Scenario 2: Tamper resistance
storage prevents most attacks

The second scenario assumes that only one in a thou-
sand attacks against tamper-resistant bitstream stor-
age is successful (relative to all other attacks as success
factors are normalized.) The three runs return a mini-
mal sequence of 25 actions each and all three of them
avoid the tamper−bitsteam actions completely. The
histogram (Figure 5) shows a smaller spread than that
of the first scenario and the median of the episodes
for each run has shrunk from (29,39,44) to (28,26,35).

5.3. Scenario 3: Faulty encryption eases
attacks

We assume that a weaker tamper protection of the
bitstream storage and a weakness in the bitstream
encryption mechanism increases the success rate of
tamper−bitstream actions. The minimal sequences
returned require 27 steps for epsilon of 0.1, 26 for 0.05
and 30 for 0.25 - a significantly worse performance
than in the previous scenarios. The histogram of
all three runs also skews much more to the right
than those of the preceding scenarios. Worse, the
three attack sequences have all 4 of the 6 bitstreams
tampered with. The success rate of one in a thousand
was, apparently, low enough to discourage the agent
from using these actions while the “one in five” -chance
is too weak to achieve a similar effect. The low success
rate is, however, strong enough to prolong the learning
process as the median number of steps per episode
rises from previously (28,26,35) to (154,155,152). The
learning progress (Figure 7) is much noisier than it
was in the baseline scenario (Figure 4.)

5.4. Scenario 4: Physical attacks
against storage devices are
expensive

Not all attacks require the same amount of resources
- some take longer than others, a few require costly

521

Michael Vetter Acta Polytechnica

Figure 3. Schematic of the FPGASECML to burlap example.

Figure 4. Number of actions necessary to reach a terminal state for each Episode in the Baseline scenario (the line
at the bottom represents the running average).

522

vol. 59 no. 5/2019 Security analysis of FPGAs designs through reinforcement learning

Figure 5. Histogram of multiple runs with different
epsilons for scenario 1 (top) and 2 (bottom).

Figure 6. Histogram of multiple runs with different
epsilons for scenario 3 (top) and 4 (bottom).

523

Michael Vetter Acta Polytechnica

Figure 7. Training progess for scenario 3 - faulty encryption eases attacks.

equipment and highly specialized threat agents. Re-
ducing the success rate of an attack makes it implicitly
more expensive (as, on average, more attacks must be
performed before succeeding) but with several million
trials per run, there is a good chance that at least one
sequence of highly improbable actions will succeed at
least once. A real attacker might not want to take
this risk. We convert our MDP back into a DMDP
and assign the tamper−bitstream action an additional
cost weight of 100.000 (this cost is subtracted from
the default reward of -1.000.) The minimal sequence
for the epsilons 0.1 and 0.25 are 24, but the low ex-
ploration rate of 0.05 has led to a global minimum
of 23. It is also notable that this global minimum is
not reached until the 2.543.660th episode and that the
agent tampers with two bitstream storages while the
other two use this expensive operation only once.

Imposing even higher costs (bitstream tampering is
extremely expensive) on the tamper−bitstream opera-
tion had no positive effect with all three runs returning
a sequence of the length 24.

5.5. Results
We can conclude that our approach found a reason-
able solution to this problem within a feasible amount
of computations. The noisy progress of the RL al-
gorithm makes it impossible to determine whether
a local or global minimum has been found. Scenar-
ios can be used to assess the impact of high costs
and low success rates and to find better solutions by
constraining the size of the search space. A plau-
sibility check of the results (here performed on the
generated sequence) is mandatory, as for all machine
learning methods. The number of training episodes
required for this small example indicates challenges
for intricate designs and models with a richer state,

action representation. The memory consumption of
the program, presumably driven by the expanding
Qtable, supports this assumption. Finding the appro-
priate cost/reward structure remains a challenge and
any analysis should include multiple scenarios with
different cost and success rate values.

6. Limits and restrictions of the
MDP based approach and
possible solutions

The MDP based model presented here relies on certain
constraints that could be lifted by supplementing the
proposed model. Hierarchical learning [34] can be used
to combine this high-level model with the low-level
activities needed to execute the strategy. It is also
plausible that the attacker does not know the state of
the system but has to guess it from a limited set of,
presumably noisy, indicators available (like physical
side channels [35][36]). The reinforcement learning
equivalent of this effect is a Partially Observable MDP
(POMDP [37] - BURLAP provides limited support for
POMDP) Transforming the MDP into a stochastic
game allows the integration of multiple actors (e.g.
an active defence mechanism.)

Navigating the vast search space remains the main
problem of the reinforcement learning. Limiting the
content of the state and the number of actions eases
this problem but restricts the expressiveness of the
model. Constraining the search space through tran-
sition probabilities and costs is another method but
increases the number of experiments. A functional
approximation of the Qtable could provide an avenue
towards an improved RL based weakness analysis.
One candidate for this approximation are deep neural
networks, whose general feasibility has been demon-

524

vol. 59 no. 5/2019 Security analysis of FPGAs designs through reinforcement learning

strated by the DeepQ [38] algorithm. This more recent
technique replaces the Qtable with a neuronal network
that approximates the value of a given state-action
combination. Suitable neural networks mitigate the
state explosion problem and should be able to detect
patterns. They may, therefore, be used to extract
and abstract information from a feature-rich state,
action representation in the same way convolution
networks extract information e.g from a picture [16].
Policy shaping [39] or reward learning [40] provide
other avenues to explore. A sufficiently competent
and autonomous reinforcement learning system could
be pitted against real-life systems (preferably in a
laboratory environment) for further refinement with-
out a human interference (similar to AlphaZero [41].)
These proposals require at least a rudimentary imple-
mentation of the design and the insight gained from
attacking this system could be transferred to other
systems still in the design and analysis phase.
Finding the best parameters for the reward and

success rates represents an additional challenge. Dif-
ferent domain experts may have different assessments
of the threat landscape or varying confidence in their
assumptions. Running a large number of scenarios
with different parameters also increases the chance to
find an efficient and robust solution. In later stages
of the development cycle, data from penetration tests
and from security incidents can be used to verify the
validity of the assumptions made. To simplify the
creation of scenarios, the point values for the cost
and success rate could be replaced with distributions
(similar to hierarchical learning in probabilistic pro-
gramming) where the actual values for each run are
drawn from.

7. Conclusion
Reinforcement learning can be used to identify poten-
tial weaknesses in an FPGA design and the steps a
reasonable attacker may take to exploit them. We
presented a method to generate a Markov Decision
Process based reinforcement learning model from a
formal, high-level system description (formulated in
the domain-specific language FPGASECML.) The
automatic model-to-model translation reduces the de-
veloper’s workload, decreases the risk of errors and
helps to keep both models in sync. Probabilistic tran-
sitions and the reward function can be used to model
the varying resilience of different elements against
attacks and the capabilities of an attacker. Supple-
mentary techniques like hierarchical learning, Partially
Observable MDPs, and stochastic games can be used
to extend the scope of the model.

References
[1] B. Schneier. Academic: Attack Trees: Schneier on
Security. https://www.schneier.com/academic/
archives/1999/12/attack_trees.html.

[2] S. M. Trimberger, J. J. Moore. FPGA Security:
Motivations, Features, and Applications. Proceedings of

the IEEE 102(8):1248–1265, 2014.
doi:10.1109/JPROC.2014.2331672.

[3] C. Isbell, M. Littman. Reinforcement learning - udacity.
https://classroom.udacity.com/courses/ud600.

[4] F. Akhtar. Practical Reinforcment Learning. Packt
Publishing Limited, 2017.

[5] M. Brambilla, J. Cabot, M. Wimmer. Model-driven
software engineering in practice. Synthesis lectures on
software engineering. Morgan & Claypool Publishers,
second edition edn., 2017.

[6] L. Delligatti. SysML distilled: A brief guide to the
systems modeling language. Addison-Wesley
Professional, 2014.

[7] J. Delange. AADL in practice. Reblechon
Development Co, 2017.

[8] Robert Ellison, Allen Householder, John Hudak, Rik
Kazman, Carol Woody. Extending AADL for security
design assurance of cyber-physical systems.
https://resources.sei.cmu.edu/asset_files/
TechnicalReport/2015_005_001_449522.pdf.

[9] F. Swiderski, W. Snyder. Threat modeling. Microsoft
Press, Redmond and Wash, 2004.

[10] JEGEIB. Getting started - microsoft threat modeling
tool - azure.
https://docs.microsoft.com/en-us/azure/
security/azure-security-threat-modeling-
tool-getting-started.

[11] Threat Dragon. https://threatdragon.org/login.

[12] J. Saxe, H. Sanders. Malware Data Science: Attack
Detection and Attribution. No Starch Press
Incorporated, San Francisco, CA, 2018.

[13] S. Parkinson, A. Crampton, R. Hill. Guide to
Vulnerability Analysis for Computer Networks and
Systems: An Artificial Intelligence Approach. Computer
Communications and Networks. Springer, 2018.

[14] M. Sutton, A. Greene, P. Amini. Fuzzing: Brute
force vulnerabilty discovery. Addison-Wesley, Upper
Saddle River, N.J., 2007.

[15] P. Bontrager, A. Roy, J. Togelius, et al.
DeepMasterPrints: Generating MasterPrints for
Dictionary Attacks via Latent Variable Evolution.
https://arxiv.org/pdf/1705.07386.pdf.

[16] I. Goodfellow, Y. Bengio, A. Courville. Deep learning.
MIT Press, Cambridge, Massachusetts and London,
England, 2016.

[17] Tencent Keen Security Lab. Autopilot.
https://keenlab.tencent.com/en/whitepapers/
Experimental_Security_Research_of_Tesla_
Autopilot.pdf.

[18] S. Lakshminarayana, T. Z. Teng, D. K. Y. Yau,
R. Tan. Optimal attack against cyber-physical control
systems with reactive attack mitigation. Proceedings of
the Eighth International Conference on Future Energy
Systems 2017, 2017. doi:10.1145/3077839.3077852.

[19] H. Koduvely. Anomaly detection through
reinforcement learning. http://blog.zighra.com/
anomaly-detection-and-reinforcement-learning.

525

https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
http://dx.doi.org/10.1109/JPROC.2014.2331672
https://classroom.udacity.com/courses/ud600
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2015_005_001_449522.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2015_005_001_449522.pdf
https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool-getting-started
https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool-getting-started
https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool-getting-started
https://threatdragon.org/login
https://arxiv.org/pdf/1705.07386.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
http://dx.doi.org/10.1145/3077839.3077852
http://blog.zighra.com/anomaly-detection-and-reinforcement-learning
http://blog.zighra.com/anomaly-detection-and-reinforcement-learning

Michael Vetter Acta Polytechnica

[20] Cyber Grand Challenge (CGC). https:
//www.darpa.mil/program/cyber-grand-challenge.

[21] Mayhem, the tech behind the DARPA Grand
Challenge winner, now used by the Pentagon -
CyberScoop. https://www.cyberscoop.com/
mayhem-darpa-cyber-grand-challenge-dod-voltron/.

[22] Chandrasekaran, Rajiv. Washingtonpost.com: Deep
blue defeats Kasparov in game 2.
https://www.washingtonpost.com/wp-srv/tech/
analysis/kasparov/kasparov.htm?

[23] N. Jones. Quiz-playing computer system could
revolutionize research. https://www.nature.com/news/
2011/110215/full/news.2011.95.html.

[24] H. van Seijen, M. Fatemi, J. Romoff, et al. Hybrid
reward architecture for reinforcement learning. CoRR
abs/1706.04208, 2017.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Playing
Atari with Deep Reinforcement Learning.

[26] AlphaGo: using machine learning to master the
ancient game of Go.
https://blog.google/topics/machine-learning/
alphago-machine-learning-game-go/.

[27] O. Vinyals, I. Babuschkin, J. Chung, et al. AlphaStar:
Mastering the Real-Time Strategy Game StarCraft II.
https://deepmind.com/blog/alphastar-
mastering-real-time-strategy-game-starcraft-ii/.

[28] Capture the Flag: the emergence of complex
cooperative agents | DeepMind. https:
//deepmind.com/blog/capture-the-flag-science/.

[29] J. Pearl. Causal inference in statistics: An overview.
Statistics Surveys 3(0):96–146, 2009.
doi:10.1214/09-SS057.

[30] J. Pearl, D. Mackenzie. The book of why: The new
science of cause and effect. First edition edn., 2018.

[31] C. Davidson-Pilon. Bayesian methods for hackers:
Probabilistic programming and Bayesian methods.
Addison-Wesley data and analytics series.
Addison-Wesley, New York, 2016.

[32] O. Martin. Bayesian Analysis with Python:
Introduction to Statistical Modeling and Probabilistic
Programming Using PyMC3 and ArviZ, 2nd Edition.
Packt Publishing Ltd, Birmingham, 2nd edn., 2018.

[33] BURLAP. http://burlap.cs.brown.edu/.
[34] R. S. Sutton, D. Precup, S. Singh. Between MDPs
and semi-MDPs: A framework for temporal abstraction
in reinforcement learning. Artificial Intelligence 112(1-
2):181–211, 1999. doi:10.1016/S0004-3702(99)00052-1.

[35] S. Mangard, E. Oswald, T. Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer
eBook Collection, Computer Science [Dig. Serial],
Springer-11645 [Dig. Serial]. Springer Science+Business
Media, LLC, Boston, MA, 2007.
doi:10.1007/978-0-387-38162-6.

[36] Meltdown and spectre.
https://meltdownattack.com/.

[37] Planning and acting in partially observable stochastic
domains. https://www.sciencedirect.com/science/
article/pii/S000437029800023X?via%3Dihub.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533, 2015. doi:10.1038/nature14236.

[39] S. Griffith, K. Subramanian, J. Scholz, et al. Policy
shaping: Integrating human feedback with
reinforcement learning. In In Advances in Neural
Information Processing Systems. 2013.

[40] A. Gonfalonieri. Inverse reinforcement learning –
towards data science.
https://towardsdatascience.com/
inverse-reinforcement-learning-6453b7cdc90d.

[41] AlphaZero: Shedding new light on the grand games
of chess, shogi and Go | DeepMind.
https://deepmind.com/blog/
alphazero-shedding-new-light-grand-games-
chess-shogi-and-go/.

526

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.cyberscoop.com/mayhem-darpa-cyber-grand-challenge-dod-voltron/
https://www.cyberscoop.com/mayhem-darpa-cyber-grand-challenge-dod-voltron/
https://www.washingtonpost.com/wp-srv/tech/analysis/kasparov/kasparov.htm?
https://www.washingtonpost.com/wp-srv/tech/analysis/kasparov/kasparov.htm?
https://www.nature.com/news/2011/110215/full/news.2011.95.html
https://www.nature.com/news/2011/110215/full/news.2011.95.html
https://blog.google/topics/machine-learning/alphago-machine-learning-game-go/
https://blog.google/topics/machine-learning/alphago-machine-learning-game-go/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/capture-the-flag-science/
https://deepmind.com/blog/capture-the-flag-science/
http://dx.doi.org/10.1214/09-SS057
http://burlap.cs.brown.edu/
http://dx.doi.org/10.1016/S0004-3702(99)00052-1
http://dx.doi.org/10.1007/978-0-387-38162-6
https://meltdownattack.com/
https://www.sciencedirect.com/science/article/pii/S000437029800023X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S000437029800023X?via%3Dihub
http://dx.doi.org/10.1038/nature14236
https://towardsdatascience.com/inverse-reinforcement-learning-6453b7cdc90d
https://towardsdatascience.com/inverse-reinforcement-learning-6453b7cdc90d
https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/
https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/
https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/

	Acta Polytechnica 59(5):518–526, 2019
	1 Introduction
	2 Related Work
	3 The descriptive model of the FPGA design
	4 The MDP-Representation of the FPGA design
	4.1 Scope and constraints of the model
	4.2 Generic components of Markov Decision Processes
	4.3 The domain-specific Markov Decision Process
	4.3.1 State
	4.3.2 Actions
	4.3.3 Reward

	4.4 Reinforcement Learning Scenarios
	4.5 Implementation

	5 Example
	5.1 Scenario 1: Baseline
	5.2 Scenario 2: Tamper resistance storage prevents most attacks
	5.3 Scenario 3: Faulty encryption eases attacks
	5.4 Scenario 4: Physical attacks against storage devices are expensive
	5.5 Results

	6 Limits and restrictions of the MDP based approach and possible solutions
	7 Conclusion
	References

