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Abstract. Electroencephalograph (EEG) is a commonly used method in neurological practice.
Automatic classifiers (algorithms) highlight signal sections with interesting activity and assist an expert
with record scoring. Algorithm K-means is one of the most commonly used methods for EEG inspection.

In this paper, we propose/apply a method based on density-oriented algorithms DBSCAN and
DENCLUE. DBSCAN and DENCLUE separate the nested clusters against K-means. All three
algorithms were validated on a testing dataset and after that adapted for a real EEG records classification.
24 dimensions EEG feature space were classified into 5 classes (physiological, epileptic, EOG, electrode,
and EMG artefact). Modified DBSCAN and DENCLUE create more than two homogeneous classes of
the epileptic EEG data. The results offer an opportunity for the EEG scoring in clinical practice. The
big advantage of the proposed algorithms is the high homogeneity of the epileptic class.
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1. Introduction
Electroencephalograph (EEG) represents the electric
activity of the brain. Brain activity is most often
recorded on the scalp. EEG is a commonly used
method in clinical practice (for example, for detection
of epilepsy, schizophrenia, etc.) [1, 2]. The mea-
sured signal depends on the type of the electrode
used, their number, location, and on many other influ-
ences. The raw signal represents a changing voltage
on each electrode, in time. We are not able to measure
the half-cell potential, therefore, the resulting volt-
age is given by the difference of the potentials of the
two electrodes. Standard pre-processing consists of
montage, filtration, and segmentation. Segments are
characterized by features, with each feature describing
a mathematical characteristic (amplitude, frequency,
etc.). Unsupervised methods do not require any user
input, so they should be more objective and less time-
consuming. The density-based clustering algorithm is
used to find non-linear shapes structure based on the
density. Density-based spatial clustering of applica-
tions with noise (DBSCAN) [3] is not used to classify
an EEG record in common practice, although it is an
algorithm that is used in many software applications
in many modifications. DENsity-based CLUstEring
(DENCLUE) [4] is a younger density-based method
working on statistical principle, see section2, which
is not generally used to classify an EEG record yet.
[3, 4] Epilepsy is a serious neurological disorder that
is manifested by seizures. In the EEG curve, the
epileptic attack is observable with the spike - wave
complex. An EEG record in a regular clinical exam-
ination contains thousands of segments. Automatic

classification methods are often binary aimed at de-
tecting only epileptogenic activity, for example [5, 6].
[7]

Many studies processed non-epileptic EEGs (see for
example [8]). Study [9], processes the epileptic EEG
records using unsupervised Kohonen’s Self-Organizing
Maps, although the authors divide the signal into
only two classes (epileptic and non-epileptic segments).
Only two classes are made, for example, in studies [10]
and [11]. The study [12] used five unsupervised algo-
rithms (among other things K-means and K-medoid)
for the automatic classification of childhood epileptic’s
EEGs. The results of this study show that K-means
is suitable for clinical practice, although the num-
ber of searched classes in this study was also two
(seizer and non-seizer class). K-means is the com-
monly used method in practice [13]. In the study [14],
Support Vector Machine and K-means with Multi-
Scale K-means (MSK-means) were compared. Two
classes were detected (epileptic and non-epileptic) with
the best results for MSK-means. Three classes were
searched in the study [15] using four algorithms (one al-
gorithm was unsupervised K-means). However, classes
were only healthy, ictal, and interictal parts of the
signal, where EEG graphoelements (for example EMG
artifect) were not detected. Unsupervised K-means
algorithm and supervised K-NN algorithm were com-
pared for classifying the EEG graphoelement in the
study [16]. Here the K-NN algorithm showed better
results than K-means.

Our aim is to classify all artefacts (parts of the EEG
signal, which do not have a source in the brain), physi-
ological and pathological segments of the EEG record.
We create a plugin compatible with the WaveFinder
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software. This software is used to describe and display
data at the National Institute of Mental Health. The
plugin should help the physician to more accurately
estimate the interesting parts of long-term signals and
possibly serve as a tool for the creation of ethalons.

2. Methods
2.1. Data
Data simulation was the first step of the algorithms
testing. Our simulated data are numerical values that
characterize segments of signal in the feature space.
We created 2D training data in MATLAB R2015a.
This data consists of nested and separated clusters.
Figure 1 shows four examples of our simulated data.
The labels are made optically in this data - sets are
visually separable. We assumed that the EEG space
contains nested clusters [17], therefore, we tested the
ability of algorithms to separate such spatial clus-
ters. Training sets demonstrate the disadvantages of
k-means classification and their compensation using
DBSCAN and DENCLUE methods.

Real EEG records were tested by the selected
algorithms in the second part of our study. The data
were obtained from patients from Bulovka Hospital in
Prague. They were obtained on the basis of the project
proposal, which was approved by the ethics committee
of Bulovka Hospital on the day 28. 6. 2011. These are
clinical examinations ranging from 15 to 30 minutes
(the dataset was not targeted for this study). Test
data were measured on patients who were diagnosed
with suspected epilepsy disease (epileptic attack did
not have to be present during the recording). 12 whole
datasets were tested. The tested patients were men
and women aged between 26 and 60 years. The lo-
calization of epilepsy and its characteristics differed
between patients, we expected automatic detection
based on the occurrence of a different kinds of spike-
wave complex [18]. The data were analysed anony-
mously without any assumptions about the nature of
the failures.

2.2. Preprocessing
The EEG signals were recorded in a 10-20 system with
19 investigated channels with a uni-polar connection
(using an average reference montage of all channels)
on the Brainquick system. The signal was filtered by
the conventional analogue filter of 0 - 70Hz. The data
were sampled at 128Hz and converted using a 12 bit
converter. [19]

We used the program Wave-Finder (WF) [20] to seg-
ment a signal, compute the features for individual seg-
ments, and for the visualization of results. The Wave-
Finder program uses adaptive segmentation (for more
information about the method, see this study [21]).
The adaptive segmentation creates segments (parts of
the EEG signal) with different segment lengths. Every
segment should contain only part of the EEG signal
with the same characteristic (for example epileptic

Parameter Setting
Window Length 128 Samples
G Window Length 15 Samples
STEP 1 Sample
Optim 1 [-]
MINLENGTH 64 Samples
Number of Scan pts 15 Samples
Treshold 81 [-]
Max Segm Length 1024 Samples

Table 1. Setting segmentation parameters: The pa-
rameter Window length specifies the length of the
associated window used in the adaptive segmentation.
G Window length is the length of the window in which
the exact position of the maximum (minimum is 3
points) is searched for. The parameter Optim turns
on and off is the optimization of the segment boundary.
It is at the lowest point nearby. Number of Scan pts is
the number of points we look at on each side to obtain
the minimum. Threshold specifies the threshold for
segmentation boundary detection. MINLENGTH is
the smallest possible length of the segment.

activity). If one segment contains parts of the EEG
signal with different characteristic, it is marked as a
wrongly segmented part of the signal. The settings
of the adaptive segmentation used in this study can
be seen in the table 1. The segments were made up
of whole records and each record entered the classi-
fication separately. Segments were evaluated by an
expert.

Features, which we are using, are described in
the book [22]. The calculation of these features is
implemented in WF and they are used in clinical
practice. There are 24 features which are normalized
in the interval 〈0;1〉. See table 2, which shows the
features that are specified below. Features create a
multidimensional space that is counted for each EEG
segment.
APOS and ANEG are the extremes of an ampli-

tude for a specific segment. They give a value of real
voltage after subtracting the DC component (ADC),
shown in equation 1 [22]:

ADC =
∑L
i=1 yi
L

, (1)

where L is the length of the segment and yi is an i-th
amplitude sample in the segment.
MAX1D (equation no. 2) and MD1 (equation no.

3) determine maximum and average slope of the signal
curve [22]:

MAX1D = max(yi+1 − yi), (2)

MD1 =

n∑
i=1

(yi+1 − yi)

n
, (3)

where yi is an i-th amplitude sample in the segment
and n is a number of segments.

499



M. Piorecký, J. Štrobl, V. Krajča Acta Polytechnica

Feature x [-]
0 0.2 0.4 0.6 0.8 1

F
ea

tu
re

 y
 [-

]

0

0.2

0.4

0.6

0.8

1

Feature x [-]
0 0.2 0.4 0.6 0.8 1

F
ea

tu
re

 y
 [-

]

0

0.2

0.4

0.6

0.8

1

Feature x [-]
0 0.2 0.4 0.6 0.8 1

F
ea

tu
re

 y
 [-

]

0

0.2

0.4

0.6

0.8

1

Feature x [-]
0 0.2 0.4 0.6 0.8 1

F
ea

tu
re

 y
 [-

]

0

0.2

0.4

0.6

0.8

1

Figure 1. Examples of 2D simulated data in the feature space used in this study to test an algorithms.

Features Description

SIGM signal variability
APOS maximal positive value
ANEG maximal negative value
DELT1 part of the delta (0.5Hz − 1.5Hz)
DELT2 part of the delta (2.0Hz − 3.5Hz)
THET1 part of the theta (4.0Hz − 5.5Hz)
THET2 part of the theta (6.0Hz − 7.5Hz)
ALPH1 part of the alpha (8.0Hz − 10.0Hz)
ALPH2 part of the alpha (10.5Hz − 13.0Hz)
SIGMA part of the sigma (18.0Hz − 29.0Hz)
BETA part of the beta (13.5Hz − 29.0Hz)
MAX1D maximum of the first derivation
MAX2D maximum of the second derivation
mf medium frequency
MD1 medium of the first derivation
MD2 medium of the second derivation
mob Hjorths parameter mobility
comp Hjorths parameter complexity
act Hjorths parameter activity
LOfC length of the curve
NLinE a nonlinear energy
ZC number of the passes by zero
Peaks the maximum peak frequency in the spectrum
InfP inflex point

Table 2. Features used for classification of EEG
segments in this study.

MAX2D (equation no. 4) and MD2 (equation no.
5) determine the curvature of the curve [22]:

MAX2D = max(xi+4 − 2xi+2 + xi), (4)

MD2 =

n∑
i=1

xi+4 − 2xi+2 + xi

n
, (5)

where yi is an i-th amplitude sample in the segment
and n is a number of segments.

Hjorth parameters are indicators of statistical prop-
erties used to process signals from the time do-
main. We use three Hjorth parameters, Activity,
Mobility, and Complexity. Activity represents a sig-
nal strength, scatter of a time function [23]:

Activity = var(y(t)), (6)

where (y(t)) represents the signal.
Mobility represents the mean frequency - the share

of the standard deviation of the power spectrum [23]:

Mobility =

√√√√var
(
y(t) · dydt

)
var (y(t)) , (7)

where var(y(t)) is Hjorth parametr of Activity, dydt is
the derivation of the amplitude of a segment in time
and y(t) is the size of the amplitude.
Complexity represents a change in frequency com-

pared to a pure sine wave [23]:

Complexity =
Mobility

(
y(t) · dydt

)
Mobility (y(t)) , (8)

500



vol. 59 no. 5/2019 Automatic EEG classification using DBSCAN and DENCLUE

whereMobility is Hjorth parametr, dy(t)
dt is the deriva-

tion of amplitudes of a segment in time and y(t) is
the amplitude.
LOfC is length of the curve if we unpack it

L =
Ns∑
i=1

abs[y(i)− y(i+ 1)], (9)

where Ns is a number of samples in the segment and
y(i) is i-th amplitude sample in the segment.

Number of passes by zero indicates how many times
the curve passed from positive to negative and vice
versa. Peaks indicates the number of peaks in the
specific segment. NLinE characterizes the signal in
terms of energy. It indicates the average power in
the band where the 80 % of the total energy of the
spectrum is concentrated [24]:

NLinE(i) = y2(i)− y(i− 1)y(i+ 1), (10)

where y(i) is the amplitude in the i-th sample in a
segment.

All of the features were normalized to create a single
feature space for the classification. Normalization
was realized by the minimum and maximum by the
following equation:

Y (i) = X(i)−min(X)
max(X)−min(X) , (11)

where min and max are the minimum and maximum
values in X dataset.

2.3. K-means
We used the K-means algorithm like a commonly used
(on the EEG data classification in clinical practice)
unsupervised method for a comparison with testing
algorithms. The unsupervised algorithm was chosen
because DBSCAN and DENCLUE are also unsuper-
vised. The K-means algorithm separate segments to
the classes using distance computing.
You can see, for example, [25] for more details

about the K-means principle. We used the K-means
MATLAB R2015a function for simulated data in this
study. The K-means from WF program was used
for the automatic classification of a real EEG record
in this study. The program WF exploits K-means
in clinical practice and we can use them to compare
K-means with density based algorithms.

2.4. DBSCAN
Density based algorithms take advantage of different
density distributions of classified objects in space to
separate individual datasets. Objects are, in our case,
the segments of EEG signals. DBSCAN classifies
objects based on density, so a range of objects with a
similar density distribution is classified in the same
class. Density means the number of points in the unit
area of the feature space. In order to avoid classifying
object regions from each other in a very distant space,

the DBSCAN defines a cluster as a high dot density
region that is separated by a low density location. The
input parameters of the algorithm are the radius (Eps)
and the number of objects in it (nPts). Compared
to the K-means algorithm, the number of clusters
is the default rather than the input parameter. It
also depends on the initiation site, in a similar way
as we perform a count with the random centre of
clusters in the case of K-means. DBSCAN searches
in the specified radius of the objects that fall into it.
The number of object in its radius makes it possible
to classify an object into three groups: a noisy, a
marginal, a centre object. [3, 26, 27]
The algorithm starts with any data object (initial-

ization object). We find all the objects that fall within
its radius. On the basis of the number of them, the
object is the initial object classified into one of the
three classes: centre, marginal, or placed in the class
of distant - noise objects. Gradually, for each of these
objects (in the initial objects radius), we look for the
number of objects in its radius, and by its number we
classify an object. If it is a centre object (it has a suf-
ficient number of objects in its radius), we assign this
object and all the objects that fall within its radius to
the centre of the object class. We repeat the previous
steps for all objects that belonged to the radius of the
starting object. If we exhaust all of the objects from
the vicinity of the initiation object, we automatically
go to the next non-classified object in the algorithm.
The entire process continues until every single object
is assigned to one of the three classes.
The formula for the automatic calculation of the

Eps value can be found in Article [28]:

Eps =
((

Πmax(x)−min(x)
i=1 i

)
·minPts·γ·(0,5·n+1)

m·
√
πn

) 1
n

,

(12)
where x are the data in the form of the matrix (m,n),
where m represents the number of segments and n
the number of flags, nPts is the number of objects in
radius and γ is the interpolation coefficient.
According to Ali’s Touhk’s [29] design, we obtain

the number of objects in the radius by sequentially
testing nPts values (from 1 to N - number of all
objects) and compiling the graphs from these values.
Each graph describes a set of test data, for example,
see 2.

The average value of the pooled objects, which are
in one cluster, is on the x axis is . The y axis is the
nPts value for which we get the number of clusters.
We get a nPts span from each graph, which provides
the required number of classes. We choose the ideal
value across all charts. Based on the results from all
tested graphs, we chose nPts = 15.
The above calculation of Eps is adequate for 2D

data. It does not give adequate results on multidi-
mensional data. We assume an uneven layout of data
in the space for DBSCAN modification. Therefore,
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Figure 2. Optimal number of nPts.

we used the Dynamic Method for Discovering Density
Varied Clusters (DMDBSCAN) principle and calculate
the radius from the curve of the nearest neighbours.
We count the distance of all objects to each object
in the file. These values are ranked ascending. For
each object, we select its first three neighbours and
make an average of them [30]. The study showed that
from the 4th neighbour, the results are no different
[31]. These values are ranked in an ascendant order
according to size and we create a curve. In the elbow
of this curve, the values are appropriate for the ra-
dius of the given data set. The evaluation was made
visually here. [26, 32]

For the tested EEG records, the curve never con-
tained more than one knee, as well as in a study [32].
Inflection objects on the curve can only be obtained
at nPts > 50 (in our 24-D space). If we reduce the
number of dimensions, we get inflection objects at
nPts = 30.
Another solution to this situation is offered by

other modifications: GRIDBSCAN. GRIDBSCAN
is a merger of several algorithms. The basic idea is
that it is possible to divide space into cells (see fig-
ure 3) that evenly distributes space [33, 34]. In the
first step, the cells are divided into over-limit (objects
further classified) and under-limit (noise). If an over-
sized cell is adjacent to an already identified cell, it is
assigned to the same class. If a gradual shift across
the cell gets to one that is not adjacent to any clas-
sified, a new class is created [34]. In this case, there
is a problem in dividing the multidimensional EEG
space, because, with a higher number of cells, the
filling becomes smaller and the classification quality
decreases.

In the study [35], they used a grid that is composed
of cells with small overlaps. The DBSCAN algorithm
runs in each cell separately. In the overlapping area,
objects are classified multiple times (depending on
the cell). The interconnection of clusters of neighbour
cells occurs just above these objects. The clusters that
have been assigned to their cells are combined in one.

Data: border, featureMatrix
Result: Classification of segments
for 1:NumberCells do

border = border of cell
objets = objects belonging to the cell
if objects =! 0 then

[classpoint,class,type] = dbscan(segments)
NumberCells = recalculated number of cell
matrix = [data, NumberCells, class, type]

end
end
for 1:NumberRecurringObjects do

if CenterObject then
NumberCluster = numbers of occurrence
classes
FN = min(NumberCluster)
NumberCells = recalculated number of cell
for 1:NumberCluster do

matrix2 = all objects will be
overwritten to FN

end
end

end
for 1:Number of rows of matrix2 do

repeatedly = repeating objects
result = stores only one object (with the
lowest class number)

end
Algorithm 1: General algorithm of modified DB-
SCAN which we used in this study.

2.5. DENCLUE
DENCLUE was the second algorithm that we tested.
DENCLUE is also a density based algorithm. The
algorithm is created for large datasets in a multidimen-
sional space [36]. The number of clusters is estimated
automatically, like with DBSCAN. The initial comput-
ing segment is not random, compared to the DBSCAN
and K-means algorithms. The DENCLUE algorithm
used two initial coefficients, the smoothness coefficient
h and the noise coefficient ξ. The main difference be-
tween DENCLUE and DBSCAN is that DENCLUE is
based on a statistical bases. Specifically, DENCLUE
is based on Kernel Density Estimation (KDE). [4, 37]
The basic idea of KDE is that we can describe

the influence of each object in its neighbourhoods by
kernel function. We can calculate the total density
function in an object x by summing this mathematical
function, as you can see in the next equation [4]:

fD (x) = 1
Nhd

N∑
i=1

FK

(
1
h

(x− xi)
)
, (13)

where fD (x) is the total density function in an object
x, h is the smoothness coefficient, N is the number of
objects, d is the size dimensions of feature space and
FK is the specific Kernel function.
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Figure 3. Cell space approximation in GRIDBSCAN classification. The dashed lines indicate the shift in the space
with the overlap in which the clusters in the individual cells are interconnected.

The smoothness coefficient controls the influence
of object neighbourhoods on the output of the total
density function. The higher smoothness coefficient
leads to a lesser influence of the objects’ distances
and higher smoothness of the total density function.
This means that the higher smoothness coefficient
will reduce the number of result clusters. We can use
several kernel functions FK . [4, 37]

We used the triangle kernel in our article, see equa-
tion 14 [38]:

FK (x) = 1− |x| x ε (−1, 1) , (14)

where FK (x) is Kernel function in an object x.
The disadvantage of KDE is in its high computa-

tional complexity. The DENCLUE algorithm reduces
the computational complexity by using the Average
Shifted Histogram (ASH). Because we compute only
with occupied cells in ASH. The histogram is very
sensitive to origin and that is a principle of ASH. We
have several histograms with different origins (shifted
histograms). When a number of shifting histograms
are approaching infinity, the result of ASH is similarly
to the result of a KDE [39]. For more information, see,
for example, [40, 41]. The occupancy of histogram
cells decreases with a rising dimension of feature space.
This problem also improves ASH. We used 2+d shifted
histograms in DENCLUE, where d is the number of
dimensions in feature space. [4, 40]
The second part of the DENCLUE algorithm is a

distribution of objects in clusters. The DENCLUE
algorithm is looking for the local maximum of the
density function, which was created using ASH. Multi-
centre definition of the cluster can be used in DEN-
CLUE to distinguish nested clusters. We will go on to
describe this definition of the cluster. The DENCLUE
algorithm finds an object (cell containing objects) on
the position of the local maximum of the density func-
tion and determine, if the local maximum is higher
than the noise coefficient. If the local maximum is
higher than the noise coefficient, the object in the

Data: Objects in feature space, h, ξ
Result: Objects distributed to clusters
loading of objects
for i=1:NumberOfObjects + 2 do

creation of histograms cells (using the h)
execution of i-th shifts
distribution of objects to cell of histograms

end
creation of ASH from histograms
finds local maxima of ASH
for j=1:NumberOfLocalMaxima do

if amplitude of j-th maximum > ξ then
center of new cluster is j-th maximum
objects attracted to i-th max. = same
cluster

else
assignment of j-th max. to the noise
cluster
objects attracted to i-th max. = noise
cluster

end
end
if ε path between 2 local maxima > ξ then

local maxima are from same cluster
end

Algorithm 2: General of DENCLUE algorithm used
in this study with the smoothness coefficient h and
the noise coefficient ξ.

local maximum forms the centre of the new cluster. If
the local maximum is lower than the noise coefficient,
the object in the local maximum is included in the
noise cluster. Every object attracted to this maximum
includes to the same cluster as their attractor. The
local maximum includes the same cluster, if there is a
path higher than the noise coefficient between them.
The noise coefficient decreases the computing complex-
ity of the algorithm, allowing creation of the spatially
entwined clusters and the located noise objects. [4]
The DENCLUE algorithm was programmed in

MATLAB R2015a and had to be modified for the
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EEG record. The problem can be that there are many
more segments of physiological activity compared with
other segments in the EEG record. Therefore, the
DENCLUE algorithm had two parts in this modi-
fication. Segments of the physiological activity are
separated from other segments in the first part. Sep-
aration is done by the noise coefficient where every
others segments should be included in a noise cluster.
The smoothness coefficient had a value of 0.0083 and
the noise coefficient had a value of 750 in the first
part of the modified algorithm. Segments from the
noise cluster are divided in the second part of the
modified algorithm. The smoothness coefficient had a
value of 0.0625 and the noise coefficient had a value of
35 during the second run of the DENCLUE algorithm.

2.6. Statistical Analysis
We divided the segments of the tested EEG records
into five classes, concretely: physiological activity
(PHY), EMG artefacts (EMG), epileptic activity
(EPI), slow eye artefacts (SLOW), and artefacts from
poor electrode contact - electrode pop (POP).

Figure 4. We include waves with sinus characteristics
among the physiological activity.

Figure 5. Segments from eye movement and blinking
are included in the class slow eye artefacts.

Figure 6. Epileptic activity with high amplitude of
the apex.

Figure 7. EMG artefacts is in the classroom, which
includes shaded segments with a line noise, when the
noise completely distorts the original signal.

Figure 8. The wrong contact of the electrode is
manifested by a narrow positive point with a high
amplitude. These artefacts usually occur only in one
channel.

We tested the efficiency of algorithms using the
ROC analysis, which is suitable for binary data eval-
uation and was used for an evaluation of EEG [42].
Data is divided into two groups: correct assignment
to a given cluster, and bad segment classification. We
created five binary confusion matrices for five different
classes evaluated in this study. The confusion matrix
contains information about the real classification into
the class (expertly evaluated) and predicted distri-
bution (classification by algorithms). Segments are
labelled on the basis of this information. True positive
(TP ) are correctly classified segments, False positive
(FP ) are mismatched segments that do not belong to
the cluster. False negative (FN) are segments that
belong to the cluster but were mistakenly assigned
to another cluster, True negative (TN) are the seg-
ments correctly assigned to a different class. Then,
we calculated Specificity, which shows the likelihood
of the segments belonging to the cluster will not be
included into another (see equation 15). Sensitivity
determines the probability of a successful detection,
which means finding all the segments belonging to the
cluster (see equation 16). Positive predictive value
(PPV ) is the most telling parameter in our case, we
can compare it to the homogeneity of the class (see
equation 17) [43]:

Specificity = TN

TN + FP
, (15)

where TN is a True negative and FP is a False positive
value.

Sensitivity = TP

TP + FN
, (16)

where TP is a True positive and FN is a False negative
value.

PPV = TP

TP + FP
, (17)

where PPV is a Positive predictive value, TP is a
True positive and FP is a False positive value.

3. Results
3.1. Test Data
The tests data were created to verify the accuracy
of the proposed algorithms. We verified the good
proposítion of the algorithms. Therefore, the test
data represent the basic features that these algorithms
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Algor. Sensitivity [-]
EPI EMG SLOW PHY POP

K-means 0.851 0.803 0.725 0.427 0.944
DC 0.827 0.639 - 0.986 0.931
DB 0.896 - 0.094 0.997 0.909

Table 3. The sensitivity parameter of the classes
epileptic activity (EPI), EMG artefacts (EMG), slow
eye artefacts (SLOW), physiological activity (PHY)
and artefacts from poor electrode contact (POP) iden-
tified in the EEG signal for the tested algorithms
DENCLUE (DC), DBSCAN (DB), and K-means.

(in correct proposition) should be/should not be able
to distinguish. Two types of test data were created
from nested clusters, one type of test data contained
outliers and the last type of test data was formed by
two good separated clusters.

All three algorithms (DBSCAN, DENCLUE, and K-
means) were verified with test data. Every algorithm
assigns different class numbers to the same data. The
sorting of the classes by maximum amplitude was then
used for real EEG data. In this section, we tested the
correct design of algorithms and sorting of the classes
is a simple separate step same for all tested algorithms.
Therefore, the sorting of the classes is not used for the
testing data. We are only viewing a correct separation
of the data. Density based algorithms had the same
results for the test data. For this reason, examples of
test data results for both density based algorithms are
shown in figure 9. The results of algorithm K-means
for the test data are displayed in figure 10.

3.2. Real EEG Data
The expert classified 49.554 segments from all EEG
records. Segments included physiological activ-
ity (PHY), epileptic activity (EPI), EMG artefacts
(EMG), artefacts from poor electrode contact (POP),
slow eye artefacts (SLOW) and wrong segmented parts
of the signal. Adaptive segmentation used for signal
pre-processing (see section 2.2) sometimes rank part
of the signal, where the transition between two classes
occurs, into one segment. These wrong segmented
parts of the signal were removed from the statistical
analysis, which has prevented it from affecting the
results. Individual tables show successive results of
sensitivity (see table 3), specificity (see table 4), and
PPV (see table 5) for all three tested algorithms.

4. Discussion
In this study, we tested the utilization of the density
based algorithms DBSCAN and DENCLUE on the
EEG signal classification. The aim of this classifica-
tion was to assist to an expert with a scoring of the
EEG signal. Algorithms should be able to identify in-
dividual elements occurring in the EEG record. This
should make it easier for the expert to find important
parts of the EEG signal and then evaluate it. We

Algor. Specificity [-]
EPI EMG SLOW PHY POP

K-means 0.956 0.966 0.782 0.984 0.999
DC 0.983 0.999 - 0.826 1.000
DB 0.997 - 0.999 0.804 0.999

Table 4. The specificity parameter of the classes
epileptic activity (EPI), EMG artefacts (EMG), slow
eye artefacts (SLOW), physiological activity (PHY)
and artefacts from poor electrode contact (POP) iden-
tified in the EEG signal for the tested algorithms
DENCLUE (DC), DBSCAN (DB), and K-means.

Algor. PPV [-]
EPI EMG SLOW PHY POP

K-means 0.641 0.178 0.010 0.996 0.932
DC 0.813 0.941 - 0.979 0.998
DB 0.969 - 0.333 0.970 0.942

Table 5. The PPV parameter of the classes epilep-
tic activity (EPI), EMG artefacts (EMG), slow eye
artefacts (SLOW), physiological activity (PHY) and
artefacts from poor electrode contact (POP) identified
in the EEG signal for the tested algorithms DENCLUE
(DC), DBSCAN (DB), and K-means.

tested whether the algorithms can identify epileptic
activity (specifically spike and wave complex) and
physiological activity. We also tested the ability to
classify artefacts, because these parts of the EEG
assist in the overall view of the signal.

We compared testing algorithms with the K-means
algorithm. The K-means algorithm is a relatively old
unsupervised algorithm, although it is still being com-
monly used in recent studies into EEG classification
(for example, studies [12] and [44]). Many other su-
pervised algorithms are also used in clinical practice
(for example K-NN, Neuronal network, or Support
Vector Machine). Supervised algorithms have their
advantages (better results in the case of the best learn-
ing process) and disadvantages (the need to create a
training set). We tested unsupervised algorithms DB-
SCAN and DENCLUE and it is necessary to compare
their results to another unsupervised algorithm. The
results are, therefore, not distorted by the difference
between unsupervised and supervised algorithms in
principle.
First, we have verified the main advantages and

disadvantages of the proposed algorithms and the K-
means algorithm on the testing dataset. The tested
data were created only for a verification of the ba-
sic properties of algorithms. If the algorithms are
correctly designed, the expected behaviour of the al-
gorithms is confirmed. According to the assumptions,
all three algorithms presented good results for the
testing data with two good separated clusters. Both
density based algorithms DBSCAN and DENCLUE
displayed good results for the testing data with nested
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Figure 9. Example of the classification of simulated data by algorithms DBSCAN and DENCLUE. Different classes
are represented by different shades of grey.
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Figure 10. Example of classification of simulated data by algorithm K-means. Different classes are displayed by
different shades of grey.
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Figure 11. Work motivation: highlighting the EEG record sections to which the physician should pay attention.

clusters (see figure 9), which is their main advantage.
Conversely, the K-means algorithm was unable to sep-
arate nested clusters and also had problems with the
classification of the outliers (see figure 10). The results
of the testing dataset are in line with the assumptions.
Algorithms were used on the real EEG data after

their verifying on the testing data. We divided the
EEG data into five clusters according to the clini-
cal significance of the EEG segments. These classes
represent the important parts of the epileptic EEG
signal (physiological activity, epileptic activity, EMG
artefacts, slow eye artefacts, and technical artefacts
from a poor electrode contact). For all three tested
algorithms, five classes were computed: sensitivity,
specificity, and positive predictive value (PPV).
The class of the epileptic activity is very impor-

tant for an expert in clinical practice. All algorithms
have high specificity for this class (see table 4). This
means that all tested algorithms correctly do not in-
clude segments that do not belong in the observed
class of the epileptic activity. The class of epilepsy
activity also had higher values for all algorithms for
the sensitivity parameter (see table 3), so the tested
algorithms found most of the epilepsy segments. The
DBSCAN algorithm had the highest PPV for the class
of an epilepsy activity. The DENCLUE algorithm had
PPV 0.813, although the K-means algorithm had PPV
value of the class of the epilepsy activity only 0.641
(see table 5). The K-means algorithm creates a class
of the epilepsy activity, including segments from other
classes.
The class of the physiological activity had a high

PPV and specificity for all tested algorithms (see ta-
bles 5 and 4). The reason is a much larger number
of physiological segments contained in the EEG sig-
nals than segments of other classes. The K-means
algorithm has a predetermined number of clusters.
We used seven clusters in our study. This number of
clusters is taken from settings for the clinical practice
of the program Wave-Finder and is selected to better
detect the clinically significant epilepsy segments. The
problem of the K-means algorithm is that segments
of physiological activity are divided into more classes,

this causes a low sensitivity of the K-means algorithm
for segments of the physiological activity. The DB-
SCAN and DENCLUE algorithms had the sensitivity
for these segments higher than 0.98 (see table 3).

The DENCLUE algorithm could not find segments
of the slow eye artefacts. The K-means algorithm
also had problems with these segments because its
PPV is only 0.010. The DBSCAN algorithm formed
classes of the slow eye artefacts, although it did not
find most of the segments of this class (sensitivity was
only 0.094). The DBSCAN algorithm did not find
segments of the EMG artefacts. The DENCLUE algo-
rithm had the highest PPV for segments of the EMG
artefacts, so it formed a homogeneous class of these
segments. However, the DENCLUE algorithm did not
find segments of the EMG artefact (the sensitivity for
the DENCLUE algorithm was 0.6394). All algorithms
were able to identify segments of the artefacts from
the poor electrode contact (see tables 3, 4 and 5).

5. Conclusion
We have investigated the efficiency of the density-
based DENCLUE and DBSCAN algorithms for a clas-
sification of the EEG segments to clinically relevant
classes. The K-means algorithm was used as a com-
parison algorithm used in clinical practice. Density-
based algorithms displayed good results for clinically
very important classes of the epilepsy activity and
physiological activity. All algorithms had problems
with the identification of the segments of the slow
eye artefacts. The DBSCAN algorithm created the
most homogeneous classes with the exception of the
class of the EMG artefacts, which could not be iden-
tified. Conversely, the DENCLUE algorithm forms
the homogeneous class of the EMG artefacts. The
results suggest that the use of algorithms, especially
for the creation of homogeneous classes, is promising,
although there is a need for further testing of the
algorithms.

Acknowledgements
This work was supported by the Grant Agency of the Czech
Technical University in Prague with the topic: Feature

507



M. Piorecký, J. Štrobl, V. Krajča Acta Polytechnica

space analysis using linear and non-linear reduction of EEG
space dimensions, grant no. SGS18/159/OHK4/2T/17;
and by the Grant Agency of Czech Republic with topic:
Temporal context in analysis of long-term non-stationary
multidimensional signal, register no. 17-20480S. We thank
to MUDr. Svojmil Petranek and Bulovka Hospital in
Prague, Department of Neurology, Prague, Czech Repub-
lic.

References
[1] Z. Dvey-Aharon, N. Fogelson, A. Peled, et al.
Schizophrenia detection and classification by advanced
analysis of eeg recordings using a single electrode
approach. PLOS ONE 10(4), 2015-4-2.
doi:10.1371/journal.pone.0123033.

[2] S. J. M. Smith. Eeg in the diagnosis, classification,
and management of patients with epilepsy. Journal of
Neurology, Neurosurgery and Psychiatry 76:ii2–ii7,
2005-06-01. doi:10.1136/jnnp.2005.069245.

[3] K. Khan, S. U. Rehman, K. Aziz, et al. Dbscan: Past,
present and future. In Applications of Digital Information
and Web Technologies (ICADIWT), vol. 5, pp. 232–238.
IEEE, 2014. doi:10.1109/ICADIWT.2014.6814687.

[4] A. Hinneburg, D. A. Keim. A general approach to
clustering in large databases with noise. Knowledge and
Information Systems 5(4):387–415, 2003.
doi:10.1007/s10115-003-0086-9.

[5] R. Sharma, R. B. Pachori. Classification of epileptic
seizures in eeg signals based on phase space
representation of intrinsic mode functions. Expert
Systems with Applications 42(3):1106–1117, 2015.
doi:10.1016/j.eswa.2014.08.030.

[6] U. R. Acharya, H. Fujita, V. K. Sudarshan, et al.
Application of entropies for automated diagnosis of
epilepsy using eeg signals. Knowledge-Based Systems
88:85–96, 2015. doi:10.1016/j.knosys.2015.08.004.

[7] F. Lotte, M. Congedo, A. Lecuyer, et al. A review of
classification algorithms for eeg based brain computer
interfaces. Journal of Neural Engineering 4(2):R1–R13,
2007-06-01. doi:10.1088/1741-2560/4/2/R01.

[8] I. Mporas, A. Efstathiou, V. Megalooikonomou. Sleep
stages classification from electroencephalographic
signals based on unsupervised feature space clustering.
In Brain Informatics and Health, pp. 77–85. Springer
International Publishing, Cham, 2015.
doi:10.1007/978-3-319-23344-4_8.

[9] C. R. Azevedo, C. F. Boos, F. M. de Azevedo.
Classification of epileptiform events in eeg signals using
neural classifier based on som. In 2015 International
Conference on Electrical Engineering and Information
Communication Technology (ICEEICT), pp. 1–5. IEEE,
2015. doi:10.1109/ICEEICT.2015.7307340.

[10] S. Belhadj, A. Attia, A. B. Adnane, et al. Whole
brain epileptic seizure detection using unsupervised
classification. In 2016 8th International Conference on
Modelling, Identification and Control (ICMIC), pp. 977–
982. IEEE, 2016. doi:10.1109/ICMIC.2016.7804256.

[11] J. M. del Rincon, M. J. Santofimia, X. del Toro, et al.
Non-linear classifiers applied to eeg analysis for epilepsy
seizure detection. Expert Systems with Applications
86:99–112, 2017. doi:10.1016/j.eswa.2017.05.052.

[12] O. Smart, M. Chen. Semi-automated patient-specific
scalp eeg seizure detection with unsupervised machine
learning. In 2015 IEEE Conference on Computational
Intelligence in Bioinformatics and Computational
Biology (CIBCB), pp. 1–7. IEEE, 2015.
doi:10.1109/CIBCB.2015.7300286.

[13] H. Rajaguru, S. K. Prabhakar. KNN Classifier and
K-Means Clustering for Robust Classification of
Epilepsy from EEG Signals. A Detailed Analysis.
Anchor Academic Publishing, 2017.

[14] G. Zhu, Y. Li, P. Wen, et al. Unsupervised
classification of epileptic eeg signals with multi scale
k-means algorithm. In Brain and Health Informatics,
pp. 158–167. Springer International Publishing, Cham,
2013. doi:10.1007/978-3-319-02753-1_16.

[15] S. Ghosh-Dastidar, H. Adeli, N. Dadmehr.
Mixed-band wavelet-chaos-neural network methodology
for epilepsy and epileptic seizure detection. IEEE
Transactions on Biomedical Engineering 54(9):1545–
1551, 2007. doi:10.1109/TBME.2007.891945.

[16] H. Schaabova, V. Krajca, V. Sedlmajerova, et al.
Supervised learning used in automatic eeg
graphoelements classification. In 2015 E-Health and
Bioengineering Conference (EHB), pp. 1–4. IEEE, 2015.
doi:10.1109/EHB.2015.7391470.

[17] M. Piorecky, E. Cerna, V. Piorecka, et al. Simulation,
modification and dimension reduction of eeg feature
space. In World Congress on Medical Physics and
Biomedical Engineering 2018, pp. 425–429. Springer
Singapore, Singapore, 2019.
doi:10.1007/978-981-10-9038-7_80.

[18] E. Niedermeyer, F. H. L. da Silva.
Electroencephalography, basic principles, clinical
applications, and related fields. Urban & Schwarzenberg,
Baltimore, 1982.

[19] S. R. Sinha, L. Sullivan, D. Sabau, et al. American
clinical neurophysiology society guideline 1. Journal of
Clinical Neurophysiology 33(4):303–307, 2016.
doi:10.1097/WNP.0000000000000308.

[20] V. Krajča, S. Petránek, T. Pietilä, H. Freay. "wave-
finder": A new system for automatic processing of long
term eeg recording. Quantitative EEG analysis-clinical
utility and new methods pp. 103–106, 1993.

[21] D. Kala, V. Krajca, H. Schaabova, et al. Optimal
parameters of adaptive segmentation for epileptic
graphoelements recognition. Radioengineering
26(1):323–329, 2017-04-14. doi:10.13164/re.2017.0323.

[22] V. Krajča, J. Mohylová. Číslicové zpracování
neurofyziologických signálů. České vysoké učení
technické v Praze, 2011.

[23] S. T.-B. Hamida, B. Ahmed, T. Penzel. A novel
insomnia identification method based on hjorth
parameters. In 2015 IEEE International Symposium on
Signal Processing and Information Technology (ISSPIT),
pp. 548–552. IEEE, 2015.
doi:10.1109/ISSPIT.2015.7394397.

[24] H. Qu, J. Gotman. A patient-specific algorithm for the
detection of seizure onset in long-term eeg monitoring.
IEEE Transactions on Biomedical Engineering
44(2):115–122, 1997. doi:10.1109/10.552241.

508

http://dx.doi.org/10.1371/journal.pone.0123033
http://dx.doi.org/10.1136/jnnp.2005.069245
http://dx.doi.org/10.1109/ICADIWT.2014.6814687
http://dx.doi.org/10.1007/s10115-003-0086-9
http://dx.doi.org/10.1016/j.eswa.2014.08.030
http://dx.doi.org/10.1016/j.knosys.2015.08.004
http://dx.doi.org/10.1088/1741-2560/4/2/R01
http://dx.doi.org/10.1007/978-3-319-23344-4_8
http://dx.doi.org/10.1109/ICEEICT.2015.7307340
http://dx.doi.org/10.1109/ICMIC.2016.7804256
http://dx.doi.org/10.1016/j.eswa.2017.05.052
http://dx.doi.org/10.1109/CIBCB.2015.7300286
http://dx.doi.org/10.1007/978-3-319-02753-1_16
http://dx.doi.org/10.1109/TBME.2007.891945
http://dx.doi.org/10.1109/EHB.2015.7391470
http://dx.doi.org/10.1007/978-981-10-9038-7_80
http://dx.doi.org/10.1097/WNP.0000000000000308
http://dx.doi.org/10.13164/re.2017.0323
http://dx.doi.org/10.1109/ISSPIT.2015.7394397
http://dx.doi.org/10.1109/10.552241


vol. 59 no. 5/2019 Automatic EEG classification using DBSCAN and DENCLUE

[25] M. R. Anderberg. Cluster analysis for classification.
Academic press, inc. London, 1973.

[26] E. Schubert, J. Sander, M. Ester, et al. Dbscan
revisited, revisited. ACM Transactions on Database
Systems 42(3):1–21, 2017-08-24. doi:10.1145/3068335.

[27] V. S. Ware, H. N. Bharathi. Study of density based
algorihms. Journal of Computer Applocations
32(8):68–75, 1999. doi:10.5120/12132-8235.

[28] A. Karami, R. Johansson, R. Choosing. Choosing
dbscan parameters automatically using differential
evolution. International Journal of Computer
Applications 91(7), 2014. doi:10.5120/15890-5059.

[29] A. Thouka. Choosing parameters of dbsccan
algorithm., 2012.

[30] M. T. H. Elbatta, W. M. Ashour. A dynamic method
for discovering density varied clusters. Inf Journal of
Signal Processing, Image Processing and Pattern
Recognition 6(1):123–134, 2013.

[31] M. Ester, H. P. Kriegel, J. Sander, X. Xu. A dentsity
based algorithm for discovering clusters in large spatial
databases with noise. In KDD, vol. 96, pp. 226–231.
1996. doi:10.5120/739-1038.

[32] N. Rahman, I. S. Sitanggang. Determination of
optimal epsilon (eps) value on dbscan algorithm to
clustering data on peatland hotspots in sumatra. In IOP
Conference Series: Earth an Environmental Science,
vol. 31. 2016. doi:10.1088/1755-1315/31/1/012012.

[33] C. J. Pang. Research of grid-similarity-based
clustering algorithm. In WASE International
Conference on Information Engineering (ICIE’09),
vol. 2, pp. 33–36. 2009. doi:10.109-ICIE.2019.202.

[34] C. F. Tsai, J. H. Zhang. Grid clustering algorithm
with simple leaping search technique. In Internatioanl
Symposium on Computer, Consumer and Control
(IS3C), pp. 938–941. 2012. doi:10.1109/IS3C.2012.244.

[35] S. Mahran, K. Mahar. Using grid for accelerating
density-based clustering. In 8th IEEE International
Conference on Computer and Information Technology,
pp. 35–40. 2008. doi:10.1109/CIT.2018.4594646.

[36] A. Hinneburg, D. A. Keim. An efficient approach to
clustering in large multimedia databases with noise. In
Proceedings of the 4th International Conference on
Knowledge Discovery and Datamining (KDD’98), pp.
58–65. 1998.

[37] A. Hinneburg, H.-H. Gabriel. Fast clustering based
on kernel density estimation. In Advances in Intelligent
Data Analysis VII, pp. 70–80. Springer Berlin
Heidelberg, 2007. doi:10.1007/978-3-540-74825-0_7.

[38] D. W. Scott, S. R. Sain. Multidimensional density
estimation. In Data Mining and Data Visualization, pp.
229–261. Elsevier, 2005.
doi:10.1016/S0169-7161(04)24009-3.

[39] D. W. Scott. Averaged shifted histograms: Effective
nonparametric density estimators in several dimensions.
The Annals of Statistics 13(3):1024–1040, 1985.
doi:10.1214/aos/1176349654.

[40] D. W. Scott. Multivariate Density Estimation: theory,
practice, and visualization. John Wiley & Sons, 2015.

[41] D. W. Scott. Averaged shifted histogram. Wiley
Interdisciplinary Reviews: Computational Statistics
2(2):160–164, 2010. doi:10.1002/wics.54.

[42] M. A. Sovierzoski, F. M. de Azevedo, I. F. M. Arqoud.
Performance evaluation of an ann ff classifier of raw eeg
data using roc analysis. In International Conference on
BioMedical Engineering and Informatics (BMEI), vol. 1,
pp. 332–336. 2008. doi:10.1109/BMEI.2008.220.

[43] C. O’Reilly, T. Nielsen. Revisiting the roc curve for
diagnostic applications with an unbalanced class
distribution. In 2013 8th International Workshop on
Systems, Signal Processing and their Applications
(WoSSPA), pp. 413–420. IEEE, 2013.
doi:10.1109/WoSSPA.2013.6602401.

[44] K. Rai, V. Bajaj, A. Kumar. Novel feature for
identification of focal eeg signals with k-means and
fuzzy c-means algorithms. In 2015 IEEE International
Conference on Digital Signal Processing (DSP), pp.
412–416. IEEE, 2015. doi:10.1109/ICDSP.2015.7251904.

509

http://dx.doi.org/10.1145/3068335
http://dx.doi.org/10.5120/12132-8235
http://dx.doi.org/10.5120/15890-5059
http://dx.doi.org/10.5120/739-1038
http://dx.doi.org/10.1088/1755-1315/31/1/012012
http://dx.doi.org/10.109-ICIE.2019.202
http://dx.doi.org/10.1109/IS3C.2012.244
http://dx.doi.org/10.1109/CIT.2018.4594646
http://dx.doi.org/10.1007/978-3-540-74825-0_7
http://dx.doi.org/10.1016/S0169-7161(04)24009-3
http://dx.doi.org/10.1214/aos/1176349654
http://dx.doi.org/10.1002/wics.54
http://dx.doi.org/10.1109/BMEI.2008.220
http://dx.doi.org/10.1109/WoSSPA.2013.6602401
http://dx.doi.org/10.1109/ICDSP.2015.7251904

	Acta Polytechnica 59(5):498–509, 2019
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Preprocessing
	2.3 K-means
	2.4 DBSCAN
	2.5 DENCLUE
	2.6 Statistical Analysis

	3 Results
	3.1 Test Data
	3.2 Real EEG Data

	4 Discussion
	5 Conclusion
	Acknowledgements
	References

