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Abstract. Temperature and surface roughness are important factors, which determine the degree
of machinability and the performance of both the cutting tool and the work piece material. In this
study, numerical models obtained from the Response Surface Methodology (RSM) and Artificial Neural
Network (ANN) techniques were used for predicting the magnitude of the temperature and surface
roughness during the machining operation of titanium alloy (Ti6Al4V). The design of the numerical
experiment was carried out using the Response Surface Methodology (RSM) for the combination of the
process parameters while the Artificial Neural Network (ANN) with 3 input layers, 10 sigmoid hidden
neurons and 3 linear output neurons were employed for the prediction of the values of temperature.
The ANN was iteratively trained using the Levenberg-Marquardt backpropagation algorithm. The
physical experiments were carried out using a DMU80monoBLOCK Deckel Maho 5-axis CNC milling
machine with a maximum spindle speed of 18 000 rpm. A carbide-cutting insert (RCKT1204MO-PM
S40T) was used for the machining operation. A professional infrared video thermometer with an LCD
display and camera function (MT 696) with infrared temperature range of −50−1000 °C, was employed
for the temperature measurement while the surface roughness of the work pieces were measured using
the Mitutoyo SJ – 201, surface roughness machine. The results obtained indicate that there is high
degree of agreement between the values of temperature and surface roughness measured from the
physical experiments and the predicted values obtained using the ANN and RSM. This signifies that
the developed RSM and ANN models are highly suitable for predictive purposes. This work can find
application in the production and manufacturing industries especially for the control, optimization and
process monitoring of process parameters.
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1. Introduction
Titanium alloy (Ti-6Al-4V) is characterized by ex-
cellent mechanical properties, such as high tensile
strength, high stiffness, good formability and excel-
lent corrosion resistance in addition to its outstanding
strength-to-weight ratio. It finds an extensive range
of applications in different industries, such as biomed-
ical, aerospace, automotive, marine, railway etc. [1, 2].
Its ease of formability via extrusion often makes it
a preferred choice for the development of complex
and intricate profiles and its outstanding strength-to-
weight ratio often promotes energy and environmental
sustainability. However, its low value of thermal con-
ductivity and Young modulus often results in a poor
surface finish and dimensional inaccuracies during the

machining operations [3]. Since, the degree of the
surface finish often influences the product’s quality,
integrity and performance, the optimization of the
process parameter is key during the machining opera-
tion of the titanium alloy. Titanium alloys are classi-
fied into three groups namely, alpha (α), alpha-beta
(α − β) and beta (β). Commercially pure titanium
and its alloys are mainly used in cryogenic applica-
tions while the α − β alloys (mostly Ti-6Al-4V) are
extensively used in the aerospace industries for the
development of aircraft components, such as airframes
and engine components [4–6]. The β alloys find appli-
cation in high strength applications due to its good
forgeability [7–9]. Temperature is an important pa-
rameter, which determines changes in the mechanical
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behaviour, microstructure, surface finish and perfor-
mance of the work piece as well as the cutting tool dur-
ing machining operations. Cutting operations under
controlled temperature can enhance the cutting oper-
ation with the development of products with relieved
residual stresses, good surface finish and mechanical
properties. On the contrary, cutting operations under
uncontrolled temperature can decrease the useful life
of the cutting tool and decrease the overall process
sutainability and promote a poor surface finish of the
final product. It can also bring about significant re-
duction in the yield and ultimate tensile strength of
the work piece material, thereby subsequently result-
ing in an increase in the strain fracture, crack growth
and fatigue behaviour of both the cutting tool and
the work piece [10, 11]. The cutting temperature in-
creases as the major energy required for the cutting
operation is converted into heat at the primary shear
zone where the main cutting action takes place and
at the secondary deformation zone of the chip-tool
interface due to friction, as well as in the work piece-
tool interface [12, 13]. The heat distribution across
the work piece, tool and chips formed based on their
configurations and their thermal conductivities results
in temperature changes. The understanding of the
temperature variation during a cutting operation will
assist in the design and selection of the right cutting
tool, as well as machinability analysis of the cutting
process. It will also assist in the selection of the ap-
propriate cutting fluid and the determination of the
energy requirements of the process. The energy re-
quirements of the process influence the sustainability
of the process in terms of its cost effectiveness and
environmental friendliness. Since temperature is a crit-
ical factor during machining operation, the amount of
heat conducted by the tool and the work piece should
be controlled to prevent a tool wear, surface roughness
of the work piece material, dimensional inaccuracy,
oxidation and corrosion. Some of the control actions
to keep cutting temperature within the permissible
limit involves the use of coolants, real time monitoring
of cutting temperature via the use of infrared video
thermometers and the process optimization of cutting
parameters, such as the depth of cut, cutting force,
speed of cutting, feed rate etc. The control actions
are necessary because research has proven that a lack
of an effective temperature monitoring and control
can significantly contribute to temperature variations
during the machining operation [14–16]. An increase
in the temperature distribution during the cutting
action often increases the power consumption of the
cutting process with the risk of increasing the dimen-
sional inaccuracy and surface roughness of the work
piece. It could also trigger a plastic deformation of
the cutting edge of the tool, which can result in a
tool wear and fracture. Several methods, such as
the analytical and numerical methods icluding the
Taguchi, Response Surface Methodology, Artificial
Neural Network (ANN) etc. have been proposed for

the prediction of the temperature and other process pa-
rameters during the cutting operations [17–21]. This
is because aforementioned approaches have proven to
be suitable for the modelling and prediction of impor-
tant process parameters and also capable of reducing
the numbers of expensive physical experimentation
runs. The only challenge is that the wrong selection
of models may cause variations in the analysis of the
temperature distribution when analytical or numer-
ical results are compared with the results from the
physical experimentations. Over the years, the ANN
has been used extensively as a modelling technique to
study the relationship between the input and output
variables in order to make predictions. The tool finds
applications in the modelling and optimization of sim-
ple as well as complex linear and non-linear systems
with multi-dimensional relationships [22–25]. Another
important parameter considered in this study beside
the temperature is the surface roughness of the fin-
ished work piece. The surface roughness index is used
to indicate the level of surface irregularities or finish
during the machining operations. It is a parameter,
which determines the quality of the final product and
its ability to meet the design specifications and its
functional requirements [26]. The correlation between
temperature and surface roughness is that when the
cutting temperature exceeds the optimum, the surface
roughness of the work piece will increase. In addi-
tion, when the cutting temperature falls below the
threshold under cutting conditions, there is a likeli-
hood for the surface roughness of the work piece to
increase. Hence, the need to keep the temperature
values within the optimum range. Both the RSM
and the ANN tools have been deployed for the De-
sign of Experiment (DoE) as well as an intelligent
computation and prediction of the process parameters
during machining operations in order to keep process
paramters within the optimum range and enhance
the overall efficiency or sustainability of the cutting
process. For instance, Kanta and Sangwan [27], per-
formed a predictive modelling and optimization of
the machining parameters in order to minimize the
surface roughness of titanium alloy using ANN and
Genetic Algorithm (GA). Kovak et al. [28] applied
the fuzzy logic and regression analysis for modelling
of the surface roughness in a face milling operation
while Campatelli et al. [29] employed the Response
Surface Methodology (RSM) for the optimization of
the power consumption during machining operations.
In addition, Djavanroodi et al. [30] used the ANN
for the modelling of an equal channel angular press-
ing process while Fathallah et al. [31] carried out the
mathematical modelling and optimization of surface
quality and productivity during the turning process of
AISI 12L14 free-cutting steel. From these works, the
modelling and optimization techniques present appli-
cable solutions for the correlation and determination of
the optimum process conditions during the machining
operations. Furthermore, the developed models and
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techniques indicate a good agreement between the pre-
dicted values and output target values, which indicate
that the techniques are capable of determining the
optimum range of the process parameters. The aim
of this work is to demonstrate the application of the
Response Surface Methodology (RSM) and Artificial
Neural Network (ANN) for the correlation and predic-
tion of the temperature and surface roughness duuring
the millling operation of titanium alloy (Ti6Al4V). In
view of this, a comparative analysis between the re-
sults obtained from both approaches (RSM and ANN)
were carried out in order to determine their suitability
for a predictive purpose.

2. Materials and methods
The chemical composition as well as the mechanical
and thermal properties of the titanium alloy (Ti-6Al-
4V) employed in this study are presented in Tables 1
and 2 respectively.

Equation 1 expresses the average surface roughness,
which gives an indication of the height variation of
the surface of the material.

Ra = 1
l

∫ l

0
|Z(x)|dx (1)

where: Z is the profile ordinates of the roughness
profile.
The temperature θi at the chip- tool interface is

expressed as Equation 2.

θi = k1Ec

√
vca1

λcv
(2)

where: k1 is a constant based on the cutting tool and
work piece material, Ec is the specific cutting energy
(Joule), Vc is the average cutting velocity (mm/sec),
a1 is the thickness of the uncut chip (mm), λ is the
thermal conductivity (W/m·K), and cv is the volume
specific heat (J/K/m3).
Since the tool life is a function of the cutting tem-

perature, the Taylor’s equation for the estimation of
the tool life is expressed as Equation 3.

V Tn = C (3)

where: V is the cutting speed (mm/min), T is the tool
life expectancy (mins) n and C are the exponent and
constant depending on the cutting tool, work piece
material and process parameters.
The tool life can also be determined from Equa-

tion 4.
V Tnfadb = C (4)

where: f and d are the feed and depth of cut respec-
tively (mm), while a and b are the exponents, which
depends on the cutting tool, work piece material and
process parameters.
The physical experiments were carried out using

a DMU80monoBLOCK Deckel Maho 5-axis CNC
milling machine with a maximum spindle speed of

18 000 rpm. A carbide-cutting insert (RCKT1204MO-
PM S40T) was used for the machining operation. A
solid rectangular work piece of Ti6Al4V was screwed
to the stationary dynamometer (KISTLER 9257A
8-Channel Summation of Type 5001A Multichannel
Amplifier) and mounted directly to the machine table.
The milling operations were performed at different
cutting parameters of feed rate, spindle speed, cutting
speed, and depth of cut. The cutting force data were
collected with the aid of the Data Acquisition System
(DAS) connected to a computer. A professional in-
frared video thermometer with an LCD display and
camera function (MT 696) with an infrared temper-
ature range of −50 − 1000 °C, response time of less
than 300ms, resolution of 0.1 to over 1 000 °Cand IR
basic accuracy of ±1.0 reading was employed for the
temperature measurement in real time.

The experimental set up and the connections of the
KISTLER dynamometer to the 5-axis CNC milling
machine are shown in Figure 1.
The Sandvik carbide insert (RCKT1204MO-PM

S40T) employed for the cutting and the work piece
(Ti6Al4V) are shown in Fig. 2.

The specifications of the cutting tool are presented
in Table 3.
The surface roughness of the samples of the work

piece were measured using the Mitutoyo SJ – 201,
surface roughness machine (Fig. 3).

2.1. The response surface methodology
The feasible combination of the process parameters
was done using the Response Surface Methodology
(RSM). The choice of the RSM was based on its ability
to iteratively study the cross-effect of process param-
eters [33–35]. The numerical experimentation com-
prises a four factor experimental design, which varied
at different levels in the following ranges; feed rate
(250− 350mm/rev), spindle speed (1000− 3000 rpm),
cutting speed (100 − 300m/min) and depth of cut
(0.3 − 0.9mm). The feasible combinations of these
process parameters produced 41 experimental trials
whose response (surface roughness and temperature)
were determined via the physical experimentations.
The statistical analysis of both the numerical and
physical experimentations were used to obtain two
mathematical models for correlating and predicting
the magnitude of the surface roughness and temper-
ature respectively, as a function of the independent
process parameters.

2.2. The ANN approach
The Artificial Neural Network (ANN) with sigmoid
hidden neurons and linear output neurons fits the pre-
diction problem given the consistent data and enough
neurons in its hidden layer (Figure 4). The network
was trained with the Levenberg-Marquardt backprop-
agation algorithm in a MATLAB 2018 B environment.
The choice of the algorithm was based on the fact
that it is highly efficient for correlative and training
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Element Al Fe O Ti V
Percent weight (wt.%) 6 0.25 0.2 90 4

Table 1. Chemical composition of titanium alloy (Ti-6Al-4V) [32].

S/N Properties Value
Mechanical
1. Density 45 000 kg/m3

2. Brinell’s hardness 334
3. Yield strength 880MPa
4. Ultimate tensile strength 950MPa
5. Bulk modulus 150GPa
6. Modulus of elasticity 113.8GPa
7. Poison’s ratio 0.342
8. Shear modulus 44GPa
9. Shear strength 550MPa
Thermal
1. Specific heat capacity 0.5263 J/g°C
2. Thermal conductivity 6.7W/m·K
3. Melting point 1 660 °C
4. Coefficient of Thermal expansion 8.70K−1

Table 2. Mechanical and thermal properties of titanium alloy (Ti-6Al-4V) [32].

Figure 1. Experimental set up.

Figure 2. The carbide cutting tool and the work piece (Ti6Al4V).
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Symbol Parameter Value
Td Inscribed circle diameter (mm) 3.987
dc Depth of cut (mm) 1.760
α Nose Radius (mm) 6.000
t Insert thickness (mm) 4.750
ϕ Lead angle (deg.) 0°

Table 3. The cutting tool geometry.

Figure 3. Mitutoyo SJ – 201, surface roughness
machine.

purposes and typically requires more memory, but
less time [36]. The training automatically stops when
generalization stops improving, as indicated by an
increase in the mean square error of the validation
samples. The architecture of the neural network com-
prises three input and output layers comprising 10
neurons in the hidden layer and 3 neurons in the out-
put layer. The total number of inputs is the same
as the number of experimental trials carried out (41)
and the same as the number of the outputs. ANN per-
forms better with a large data set, however, the data
set employed in this study is limited to 41 because of
cost considerations since it is a preliminary analysis.
For a detailed analysis, it is necessary to increase the
number of samples and data sets in order to enhance
the performance of the ANN.
The trainlm network training function, which up-

dates the weights and biases according to Levenberg-
Marquardt optimization, was employed. This is be-
cause it is often the fastest backpropagation algorithm
in the Neural Network toolbox, and is highly suitable
for supervised learning, although it requires more
memory than other algorithms [36].
From the physical experimentations, the feed rate,

spindle speed and the cutting velocity were used as
the input parameters while the depth of cut, surface
roughness and temperature serve as the output target.
The grouping of the input and the output target are
as follow;
Inputs= p =[300 300 350 300 250 250 300 300 350

250 250 300 325 350 300 300 350 275 350 325 350 325
325 325 325 325 350 300 350 325 300 350 300 325 300
325 300 300 325 300 375; 250 100 300 100 200 200 300

Figure 4. The architecture of the neural network.

300 300 200 250 300 200 250 300 200 300 100 300 200
100 200 100 200 200 200 200 200 300 300 300 100 200
100 100 100 100 200 100 200 300; 0.6 0.3 0.3 0.6 0.6
0.9 0.6 0.9 0.6 0.3 0.3 0.6 0.3 0.3 0.3 0.9 0.6 0.9 0.6
0.6 0.6 0.6 0.6 0.9 0.3 0.3 0.6 0.6 0.9 0.9 0.3 0.3 0.3
0.9 0.6 0.9 0.3 0.6 0.9 0.6 0.3];

Targets= t =[3000 1000 3000 1000 2000 2000 3000
1000 3000 2000 1000 2000 2000 1000 3000 1000 2000
1000 2000 3000 2000 2000 2000 2000 2000 1000 3000
3000 3000 2000 2000 3000 3000 3000 1000 1000 2000
1000 1000 2000 3000; 0.79 0.91 0.86 0.98 0.75 0.78
0.83 0.88 0.84 0.70 0.79 0.88 0.84 0.52 0.60 0.96 0.97
0.98 0.99 0.58 0.56 0.74 0.77 0.86 0.85 0.79 0.88 0.46
0.66 0.80 0.87 0.76 0.95 0.79 0.98 0.78 0.80 0.87 0.58
0.77 0.54; 176 160 85 165 124 140 170 156 145 157 95
93 87 88 60 100 120 180 165 158 177 186 168 175 145
123 127 180 87 78 98 96 92 102 105 125 136 140 155
160 156];

The number of the neurons in the hidden layer (hn)
is the weighted sum of inputs and bias, expressed as
Equation 5.

hn =
∑

(wi) + b (5)

Where w is the weight of the input parameters, i is
the number of input parameters and b is the bias.
For the three input data parameters employed for

this study (the feed rate, spindle speed and the cut-
ting velocity), the number of the neurons in the hid-
den layer was obtained as ten and the corresponding
number of the output layer and expected output pa-
rameters was three (depth of cut, surface roughness
and temperature) as shown in Figure 4.
The trained neural network then produced two

mathematical models for correlating the network out-
puts while predicting the magnitudes of the surface
roughness and temperature.

3. Results and discussion
3.1. Results from the response surface

methodology
The statistical analysis of the developed model for
predicting surface roughness as a fucntion of the inde-
pendent process parameters (feed rate, spindle speed,
cutting velocity and depth of cut) as well as its Anal-
ysis of Variance (ANOVA) are presented in Tables 4
and 5 respectively.
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Statistical parameters Sum of squares df Mean square F value p-value
Prob > F Remarks

Model 0.23 5 0.046 3.02 0.0299 Significant
B-Spindle speed 0.034 1 0.034 2.21 0.502
C-Cutting velocity 4.817E-3 1 4.817E-3 0.32 0.5796
D-Depth of Cut 0.027 1 0.027 1.75 0.1989
BC 0.053 1 0.053 3.46 0.0751
BD 0.11 1 0.11 7.35 0.0122
Residual 0.37 24 0.015
Lack of Fit 0.26 19 0.014 0.63 0.7891 Not significant
Pure Error 0.11 5 0.022
Corr Total 0.60 29

Table 4. The statistical analysis of the developed model (Surface roughness).

Parameter Value Remarks
R-Squared 0.9675 Significant
Adj R Squared 0.9879 Significant
Predicted R-Squared 0.9609 Significant
Adeq. Precision 6.8300 Significant

Table 5. The Analysis of Variance (ANOVA) for the
developed model (Suface roughness).

the “p-value Prob > F” was less than 0.050 for the
overall model term (0.0299 < 0.05). This indicates
that the overall model term is statistically signifi-
cant. The statistical significance of the overall model
term implies that certain model term is a critical
factor (specifically model term BD) that could influ-
ence the magnitude of the measured response (surface
roughness). In this instance, the factors (statistical
parameters) are: B (spindle speed), C (cutting veloc-
ity), D (depth of cut), BC (cross effect of the spindle
speed and cutting velocity) and BD (cross effect of the
spindle speed and the depth of cut). The significant
model term was BD (0.0122 < 0.05). The “Lack of
Fit” value of 0.63 implies that the lack of fit is not sta-
tistically significant relative to the pure error. There
is a 78.91% chance that a “Lack of Fit-F-value” this
large could occur due to noise. The non-significance of
the “Lack of Fit” value implies that the model is good
for a predictive purpose. The values of the Adjusted
R-square (0.9879) and Predicted R square (0.9609)
were in a reasonable agreement with the R squared
(0.9675), and were all close to 1, thus, indicating that
the model is suitable for correlative predictive pur-
poses. In addition, the Adeq. Precision, which is a
measure of the signal to noise ratio has a value greater
than 4, which is desirable. This implies that the model
is suitable for navigating the design space.
The results obtained from both the numerical and

physical experimentations were statistically analysed
using the RSM to obtain a predictive model, which
correlates the surface roughness as a function of the
significant independent process parameters, namely

the feed rate and depth of cut (Equation 6).

Surface Roughness = +0.77− 0.038B−
− 0.014C + 0.033D − 0.058BC + 0.084BD (6)

Where; B is the spindle speed (mm), C is the cutting
velocity (m/min) and D is the depth of cut (mm).

Equation 6 is a first order 2FI model equation and
it was found to be adequate for the predictive and
correlative purposes relating to the surface roughness
of the samples. The non-significance of the “Lack of
Fit” value implies that the model equation is good for
a predictive purpose. If the “Lack of Fit” is significant,
other model equations, such as the quadratic or a cubic
model equations, can be considered.

Figure 5 is the normal plot of the residuals for the
developed model for surface roughness. This plot
shows the degree, to which the data set is normally
distributed. The closeness of the data to the aver-
age (diagonal) line indicates that the residuals are
approximately linear (normally distributed), although
with an inherent randomness left over within the er-
ror portion. The departure of data points from the
average line were marginal and found to be between
the permissible range of ±10% in a relation to the
average line. The approximately linear pattern ob-
tained is an indication of a normally distributed data
set and the development of an accurate model, which
can be used for predictive and correlative purposes.
In addition, the data set does not assume a non-linear
pattern and there was no outliner (a data point that
significantly falls outside the average line) in the plot,
thus, indicating that the residual terms are normally
distributed.

The statistical analysis of the developed model for
predicting the cutting temperature as a function of
the independent process parameters (feed rate, spindle
speed, cutting velocity and depth of cut) as well as
its Analysis of Variance (ANOVA) are presented in
Tables 6 and 7 respectively.

The model “F-value” of 2.11 implies that the model
is statistically significant. There is only a 9.88%
chance that the model “F-value” this large could occur
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Figure 5. The normal plot of residuals (surface roughness).

Statistical parameters Sum of squares df Mean square F value p-value
Prob > F Remarks

Model 11882.92 5 2376.58 2.11 0.0001 Significant
A-Feed rate 198.38 1 198.38 0.18 0.6783
B-Spindle speed 18.38 1 18.38 0.016 0.8994
D-Depth of Cut 10001.04 1 10001.04 0.89 0.3550
AB 3052.56 1 3052.56 2.71 0.1126
AD 7612.56 1 7612.56 6.77 0.0157
Residual 27004.95 24 1125.21
Lack of Fit 18574.95 19 977.64 0.58 0.8226 Not significant
Pure Error 8430.00 5 1686.00
Corr Total 38887.87 29

Table 6. The statistical analysis of the developed model (Temperature).

due to noise. In addition, the value of the “p-value
Prob > F” of the overall model term was 0.0001. The
fact that the value of the “p-value Prob > F” was
less than 0.050 indicates that the model terms are
statistically significant. The statistical significance
of the overall model term means that certain model
term is a critical factor (specifically model term AD)
that could influence the magnitude of the measured
response (Temperature). In this instance, the factors
(statistical parameters) are: factors A (feed rate), B
(spindle speed), D (depth of cut), AB (cross effect
of the feed rate and spindle speed) and AD (cross
effect of the feed ate and the depth of cut). The
significant model term was AD (0.0157<0.05). Values
greater than 0.05 indicate that the model term is not
statistically significant at 95% confidence level. The
“Lack of Fit” value of 0.58 implies that the lack of
fit is not statistically significant relative to the pure
error. There is a 82.26% chance that a “Lack of
Fit-F-value” this large could occur due to noise. The
non-significance of the “Lack of Fit” value implies that

Parameter Value Remarks
R-Squared 0.9008 Significant
Adj R Squared 0.9100 Significant
Predicted R-Squared 0.9105 Significant
Adeq. Precision 5.494 Significant

Table 7. The Analysis of Variance (ANOVA) the
developed model.

the model is good for a predictive purpose. The values
of the Adjusted R-square (0.9008) and Predicted R
square (0.9100) are in a reasonable agreement with
the R squared (0.9105), and were all close to 1, thus,
indicating that the model is suitable for correlative
predictive purposes. In addition, the Adeq. Precision
is a measure of the signal to noise ratio and a value
greater than 4 is usually desirable hence a value of
5.494 obtained for the Adeq. Precision implies that
the model is suitable for navigating the design space.
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Figure 6. The normal plot of residuals (Temperature).

The results obtained from both the numerical and
physical experimentations were statistically analysed
using the RSM to obtain a predictive model, which
correlates the temperature as a function of the sig-
nificant independent process parameters, namely the
feed rate and depth of cut (Equation 7).

Temperature = +128.73 + 2.87A− 0.88B−
− 6.46D − 13.81AB + 21.81AD (7)

where: A is the feed rate (mm) B is the spindle speed
(rpm) and D is the depth of cut (mm).

Equation 7 is a first order 2FI model equation and
was found to be adequate for the predictive and correl-
ative purposes relating to the machining temperature.
The non-significance of the “Lack of Fit” value implies
that the model equation is good for a predictive pur-
pose. If the “Lack of Fit” is significant, other model
equations, such as the quadratic or a cubic model
equations, can be considered.
Figure 6 shows the normal plot of the residuals

for the developed model of temperature prediction.
Similar to Figure 5, the closeness of the data to the
average (diagonal) line indicates that the residuals are
approximately linear (normally distributed) although
with an inherent randomness left over within the er-
ror portion. The departure of data points from the
average line were marginal and found to be between
the permissible range of ±10 % in relation to the aver-
age line. The approximately linear pattern obtained
is an indication of a normally distributed data set
and the development of an accurate model, which can
be used for predictive and correlative purposes. In
addition, the data set does not assume a non-linear
pattern and there was no outliner (a data point that
significantly falls outside the average line) in the plot,

thus, indicating that the residual terms are normally
distributed.

The depth of cut, which measures the distance pen-
etrated by the cutter in the work piece is a function of
the rate of material removal while the cutting speed is
a measure of the relative velocity between the cutting
tool and the work piece during the cutting operation.
The spindle speed is the rotational frequency of the
machine’s spindle, which measures the number of rev-
olutions of the spindle per minute while the feed rate
measures the velocity at which the cutter is fed past
the work piece per revolution [37].

Figures 7 and 8 are the contour and 3D plots, which
show the effect of the spindle speed and cutting ve-
locity on the surface roughness of the material. An
increase in the magnitude of the cutting velocity was
observed to result in an increase in the magnitude of
the surface roughness. This can be due to the fact
that an increase in the relative velocity between the
cutting tool and work piece can result in an increase
in the temperature distribution in the tool and work
piece material due to increase in frictional activities,
thus, causing an increase in the magnitude of the
surface roughness. This challenge can be mitigated
via the application of an effective cooling strategy to
reduce the frictional activities and heat generation
at the cutting interfaces. With the application of
the cutting fluid, machining under high speed can be
beneficial in the sense that it will promote time and
cost effectiveness of the machining operation and also
increase the rate of material removal while bringing
the product to the required surface finish condition.
Figures 9 and10 are the contour and the 3D in-

teractive plots, which show the effect of the spindle
speed and depth of cut on the surface roughness of
the work piece respectively. The relationship between
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Figure 7. The contour plot of the spindle speed and cutting velocity.

Figure 8. The interactive 3D plot of the spindle speed and cutting velocity.

377



I. Daniyan, I. Tlhabadira, K. Mpofu, A. Adeodu Acta Polytechnica

Figure 9. The contour plot of the spindle speed and depth of cut.

Figure 10. The interactive 3D plot of the spindle speed and depth of cut.
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the spindle speed and the depth of cut was found to
be inversely proportional from the plots. An increase
in the depth of cut was observed to produce an in-
crease in the magnitude of the surface roughness and
vice versa. On the contrary, the magnitude of the
surface roughness was observed to decrease with an
increase in the spindle speed and vice versa. This
may be due to the fact that a decrease in the depth
of cut may result in an increase in the surface area
to volume ratio of the work piece, thereby promoting
frictional activities at the tool-work piece interface
and subsequently, increase in the surface roughness of
the material [26]. Furthermore, each revolution of the
machine’s spindle represents a smaller circumferential
distance, therefore, an increase in the spindle speed
may cause the circumferential distance to decrease.
As the tool approaches the work piece for material
removal, the spindle speed may cause the work piece
surface to decrease, thereby decreasing the frictional
activities and the possibility for the development of a
built up edge at the tool-work piece interface. Hence,
this phenomenon promotes a significant reduction in
the magnitude of surface roughness. This agrees sig-
nificantly with the findings of Kumar et al. [38].
Figures 11 and 12 are the contour and the 3D in-

teractive plots, which show the effect of the feed rate
and spindle speed on the cutting temperature during
the machining operation. The relationship between
the feed rate and the spindle was found to be directly
proportional. An increase in the magnitude of the feed
rate was observed to result in an increase in the mag-
nitude of the temperature and vice versa. In addition,
an increase in the magnitude of the spindle speed was
also observed to result in an increase in the magnitude
of the cutting temperature and vice versa. As the
velocity, at which the cutting tool is fed past the work
piece (feed rate), increases, the energy requirement of
the cutting process may increase with an increase in
the magnitude of the cutting temperature. This is in
an accordance with the law of energy conservation as
part of the energy input is converted to heat energy,
which subsequently promotes an increase in the cut-
ting temperature. Furthermore, as the magnitude of
the spindle speed increases, the energy requirement
of the process also increases with a tendency for a
temperature build-up, if an effective cooling strategy
is not put in place.
Figures 13 and 14 are the contour and the 3D in-

teractive plots, which show the effect of the feed rate
and depth of cut on the cutting temperature during
the machining operation. The relationship between
the depth of cut and the feed rate, in this case, was
found to be directly proportional. An increase in the
magnitude of the depth of cut and feed rate was found
to result in a significant reduction in the magnitude of
the cutting temperature and vice versa. This may be
attributed to the fact that an increase in the depth of
cut may result in a decrease in the surface area of the
work piece, which promotes the quick heat dissipating

capacity of the applied coolants at the tool-work piece
interface due to the reduced surface. The effectiveness
of the coolants within a small area of the work piece
may account for a significant reduction in the mag-
nitude of the cutting temperature at the shear zone.
The findings indicate that the process parameters and
machining conditions are key parameters, which in-
fluence the rate of machinability, degree of surface
finish as well as process economics and sustainability,
hence the need for an effective process design and
control [39, 40].

3.2. Results from the Artificial Neural
Network (ANN)

Figure 15 presents the performance-training plot,
which consists of the training and the iteration lines.
The plot indicates the iteration at which the perfor-
mance goal (target) was met. The ease of convergence
of both the training and the iteration lines at the 98th
iteration indicates that the developed network is ade-
quate for the predictive purpose as indicated by the
training line, which cuts through the vertical line and
the negligible value of the Mean Square Error (10−4).
The figure shows the plots of the three major steps for
the modelling process using neural network, the train-
ing, validation and testing plots. The validation plot
is used to estimate the adequacy of the network for
the predictive purpose while tuning the weights and
biases during the neural network development. The
training plot measures the performance and accuracy
of the developed network during the prediction. The
epoch indicates the number of iterations carried out
before the network was suitable for correlative and
predictive purposes. The similarity in the pattern of
the validation and the test plots indicate that there
is no overfitting of the data set, which may affect
the suitability of the network for predictive purpose.
The best validation performance was obtained after
the 92nd iteration, after which six more iterations
were carried out before the training automatically
stopped. Hence, the minimum number of iterations
that produced the best validation performance was
92.
Table 8 presents the results obtained from the fea-

sible combinations of process parameters using the
Response Surface Methodology (RSM) as well as the
values of the surface roughness and the actual tem-
perature obtained via the physical experiments. This
serves as the input and output parameters of the
developed neural network.
Figure 16 is a plot of the gradient, training gain

Mu and validation check after the network has been
adequately trained. The gradient was 4.2011 · 10−4

while the training gain Mu was 1.00 · 10−7 at the 98th
iteration. The training stopped at the 98th iteration
due to the increase in error as the data sets begin to
overfit. Thus, the best validation performance that
indicates neither significant error nor validation check
failure was observed at the 92nd iteration. Beyond
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Figure 11. The contour plot of the feed rate and spindle speed.

Figure 12. The interactive 3D plot of the feed rate and spindle speed.
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Figure 13. The contour plot of the feed rate and depth of cut.

Figure 14. The interactive 3D plot of the feed rate and depth of cut.
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Figure 15. Performance training graph.

Figure 16. The plot of the gradient, training gain Mu and validation check.
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Experimental
trials Feed rate Spindle

speed
Cutting
velocity

Depth
of cut

Average
Surface Roughness

Actual
Temp.

(mm/rev) (rpm) (m/min) (mm) (µm) (°C)
1. 300 3000 250 0.60 0.79 176
2. 300 1000 100 0.30 0.91 160
3. 350 3000 300 0.30 0.86 85
4. 300 1000 100 0.60 0.98 165
5. 250 2000 200 0.60 0.75 124
6. 250 2000 200 0.90 0.78 140
7. 300 3000 300 0.60 0.83 170
8. 300 1000 300 0.90 0.88 156
9. 350 3000 300 0.60 0.84 145
10. 250 2000 200 0.30 0.70 157
11. 250 1000 250 0.30 0.79 95
12. 300 2000 300 0.60 0.88 93
13. 325 2000 200 0.30 0.84 87
14. 350 1000 300 0.30 0.52 88
15. 300 3000 100 0.30 0.60 60
16. 350 1000 300 0.90 0.96 100
17. 275 2000 200 0.60 0.67 120
18. 350 1000 100 0.90 0.98 180
19. 325 2000 200 0.60 0.99 165
20. 350 3000 100 0.60 0.58 158
21. 325 2000 200 0.60 0.56 177
22. 325 2000 200 0.60 0.74 186
23. 325 2000 200 0.60 0.77 168
24. 325 2000 200 0.90 0.86 175
25. 325 1000 200 0.30 0.85 145
26. 350 3000 300 0.30 0.79 123
27. 300 3000 300 0.60 0.88 127
28. 350 3000 300 0.60 0.46 180
29. 325 2000 100 0.90 0.66 87
30. 300 3000 200 0.90 0.80 78
31. 350 3000 100 0.30 0.87 98
32. 300 3000 100 0.30 0.76 96
33. 350 1000 100 0.30 0.95 92
34. 325 1000 100 0.90 0.79 102
35. 300 2000 200 0.60 0.98 105
36. 325 1000 100 0.90 0.78 125
37. 300 2000 200 0.30 0.80 136
38. 300 1000 300 0.60 0.87 140
39. 325 1000 300 0.90 0.58 155
40. 300 2000 200 0.30 0.77 160
41. 375 3000 300 0.60 0.54 156

Table 8. The results obtained from both the physical and numerical experiments.
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the 98th iteration, the validation checks carried out
begin to fail as indicated by the Figure. The small
values of the gradient (4.2011 · 10−4) and the training
gain (1.00 · 10−7) indicate that the difference between
the output and the target is negligible. The error first
reduces up to the 98th epochs of training, but may
start to increase due to overfitting the training data
by the network after the 98th iteration.
Figure 17 shows the statistical validation of the

developed network. The errors obtained by finding
the difference between the targets and outputs from
the network were represented by a histogram. As
shown by the Figure, the values of the error were
insignificant. The bins are the number of vertical bars
on the plot and each bar represents the number of
samples from the data set. In this case, the total
number of the bins was 20. The value of the error,
which is the difference between the target and the
output of the network, ranges from a minimum value
of −4.73 · 10−3 to a maximum value of 2.224 · 10−2.
This was divided into 20 smaller bins and the error
was calculated as follow;

Error = 2.224 · 10−2 − (−4.73 · 10−3)
20

Error = 1.3485 · 10−3

The width of the error corresponds to 1.3485 · 10−3.
Furthermore, the error at the left hand side of the

plot was −4.70 · 10−4 when the vertical height of the
bin for the data validation was 35. This implies that
35 samples from the validation data set have errors
that fall in the range. The error range is, therefore,
calculated as follow;

Error range =
(
−4.70 · 10−4 − 1.3485 · 10−3

2 ;

−4.70 · 10−4 + 1.3485 · 10−3

2

)
Error range =

(
−9.1075 · 10−4; 4.3925 · 10−4)

The range of error corresponds to −4.70 · 10−4 at the
left hand side of the graph. Similarly, the errors for
other bins can be analysed likewise. The range of
error is very small and negligible, thus, indicating a
high degree of agreement between the targets and the
network outputs. This also signifies a high probability
that the predictions from the network will be accurate.

As shown in Figure 18, the developed network was
validated by creating a regression plots to show the re-
lationship between the outputs of the network and the
targets. In other words, the regression plots show the
degree of agreement between the values obtained from
the physical and numerical experimentations. The
Mean Squared Error (MSE) is the average squared
difference between outputs and targets. Lower values
signify small and negligible error, hence, the lower the
value of the MSE, the better the developed network
and vice versa. Zero means no error. The regression

coefficient R is the measure of the correlation between
outputs and targets. An R-value of 1 means a close re-
lationship while zero indicates a random relationship.
The correlation coefficient R of the first regression plot
for the training was 0.95119, which indicates that there
is a near exact linear relationship between outputs
and targets, hence, the agreement between the values
of the physical and numerical experimentations can
be declared highly significant. The second regression
plot is the validation plot, which is used to examine
the suitability of the developed model for predictive
purposes. The correlation coefficient R obtained was
0.81089. This is close to 1, which also indicates that
the network is capable of performing the predictive
function accurately with minimal deviations from the
target. The reduction in the value of the correlation
coefficient stems from the fact that the size of the data
sample was relatively small. The larger the size of
the data sets, the more efficient the predictive ability
of the network and vice versa. The closer the value
of the correlation coefficient R to 1, the better the
network, which indicates a minimal difference between
the target and the network output. The value of the
correlation coefficient R can be made closer to 1, by
increasing the size of the data set while adjusting the
weights and biases of the network architecture. The
third regression plot is the test plot, which is a direct
function of the performance of the network during pre-
diction. This has a correlation coefficient of 0.95119.
The fourth regression plot represents the overall per-
formance of the network architecture. The correlation
coefficient obtained for this was 0.92373. This is rel-
atively close to 1, which indicates the suitability of
the developed model for predicting the temperature
and surface roughness during the milling operation of
titanium alloy (Ti6Al4V).

The model equations for the prediction of the mag-
nitude of the surface roughness as well as temperature
from the ANN models are expressed as Equations 8
and 9 respectively.

Output Y, Linear F it : Y = (0.38)T + (0.49) (8)

Output Y, Linear F it : Y = (0.26)T + (99) (9)

where: T is the target variable.
Table 9 compares the actual value of the tempera-

ture and surface roughness from the physical experi-
mentations with the predicted values obtained with
the aid of the ANN. The high degree of agreement be-
tween the values of temperature and surface roughness
from the physical experimentations and the predicted
temperature using ANN indicates that the developed
network is highly suitable for the predictive purpose.
Figures 19 and 20 show the actual and predicted

values of the temperature and surface roughness for
the milling operation of Ti6Al4V respectively, using
the RSM and ANN. The similarity in the data sets
and pattern of the plots indicate the closeness of
the predicted values to the actual values. This also
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Figure 17. The error histogram plot.

Figure 18. The regressions plots.
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Experimental
trials

Actual values | Predicted values
Surface

Roughness Temp. Surface
Roughness

Surface
Roughness Temp. Temp.

(µm) (°C) (µm) (µm) (°C) (°C)
(RSM) (ANN) (RSM) (ANN)

1. 0.79 176 0.7867 0.7901 177.345 176.011
2. 0.91 160 0.8765 0.9101 161.654 160.505
3. 0.86 85 0.9786 0.8599 84.235 85.045
4. 0.98 165 0.9999 0.9802 164.234 165.234
5. 0.75 124 0.7768 0.7501 126.786 123.999
6. 0.78 140 0.7576 0.7802 142.348 139.999
7. 0.83 170 0.8478 0.8300 168.345 170.001
8. 0.88 156 0.8945 0.8800 157.097 156.201
9. 0.84 145 0.8678 0.8465 145.906 145.332
10. 0.70 157 0.7234 0.7000 154.55 157.001
11. 0.79 95 0.7809 0.7930 96.546 94.999
12. 0.88 93 0.8903 0.8801 93.997 92.999
13. 0.84 87 0.8568 0.8400 86.435 86.999
14. 0.52 88 0.5457 0.5200 88.094 88.001
15. 0.60 60 0.6216 0.6002 60.987 60.002
16. 0.96 100 0.9778 0.9600 100.778 100.002
17. 0.67 120 0.6670 0.6701 121.983 120.001
18. 0.98 180 0.9902 0.9980 180.995 179.001
19. 0.99 165 0.9763 0.9900 165.679 164.999
20. 0.58 158 0.5567 0.5867 156.547 157.999
21. 0.56 177 0.5347 0.5600 177.985 176.999
22. 0.74 186 0.7560 0.7400 185.856 186.001
23. 0.77 168 0.7479 0.7765 169.753 168.002
24. 0.86 175 0.8906 0.8679 176.779 175.002
25. 0.85 145 0.8237 0.8599 145.908 145.001
26. 0.79 123 0.7779 0.7923 122.764 122.999
27. 0.88 127 0.8673 0.8600 125.667 126.999
28. 0.46 180 0.4237 0.4500 181.458 179.999
29. 0.66 87 0.6679 0.6607 87.975 86.999
30. 0.80 78 0.8963 0.8325 78.875 78.001
31. 0.87 98 0.8346 0.8678 96.775 98.001
32. 0.76 96 0.78429 0.7700 95.789 96.002
33. 0.95 92 0.9974 0.9450 93.446 92.002
34. 0.79 102 0.7642 0.7900 102.998 101.999
35. 0.98 105 0.9458 0.9804 106.765 105.999
36. 0.78 125 0.7648 0.7867 123.457 125.999
37. 0.80 136 0.7998 0.8002 137.896 136.222
38. 0.87 140 0.7998 0.87001 142.556 140.001
39. 0.58 155 0.5679 0.58001 156.798 155.001
40. 0.77 160 0.7942 0.77001 163.564 160.011
41. 0.54 156 0.5679 0.54001 156.789 156.011

Table 9. The results obtained from both the physical and numerical experiments.
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Figure 19. Actual and predicted values for temperature.

Figure 20. Actual and predicted values for surface roug.
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indicates the accuracy and the effectiveness of the
RSM and ANN for correlative and predictive purposes.
However, the ANN demonstrated a better predictive
ability than the RSM as observed by the magnitude
of its predictions being closer to the actual values for
both the temperature and the surface roughness as
opposed to the RSM, though, the errors generated by
both approaches were negligible and were found to be
within the permissible limit (Table 9).

4. Conclusion
The prediction of the temperature and surface rough-
ness during the milling operation of Ti6Al4V was
successfully carried out using the RSM and ANN. The
developed RSM and ANN models were highly efficient
for a predictive purpose as their correlation coeffi-
cients R were close to 1. This indicates that there
exists a linear relationship between the outputs and
targets, thus, indicating the significance of the overall
model terms and an agreement between the values of
the temperature and surface roughness obtained from
both the physical and numerical experimentations.
The RSM demonstrated a good predictive ability with
the predicted values found to be within the range of
the actual values. The ANOVA of the models devel-
oped using the RSM were found to be statistically
significant, which implies the suitability of the models
for correlative and predictive purposes. However, the
predicted values from the ANN were observed to be
closer to the actual experimental values, for both the
temperature and the surface roughness, than the pre-
dicted values from the RSM models. Nonetheless, the
errors generated by both approaches were negligible
and found to be within the permissible limit. This
work can find application in the production and man-
ufacturing industries especially for process control,
optimization and monitoring of cutting temperature
and surface roughness in order to keep them within
the permissible limit. Further work can consider the
use of Genetic Algorithm or other analytical models
as well as comparative analyses among the identified
approaches.
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