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Abstract. This paper is interested in the mathematical modelling of the voice production process.
The main attention is on the possible closure of the glottis, which is included in the model with the
concept of a fictitious porous media and using the Hertz impact force The time dependent computational
domain is treated with the aid of the Arbitrary Lagrangian-Eulerian method and the fluid motion
is described by the incompressible Navier-Stokes equations coupled to structural dynamics. In order
to overcome the instability caused by the dominating convection due to high Reynolds numbers,
stabilization procedures are applied and numerically analyzed for a simplified problem. The possible
distortion of the computational mesh is considered. Numerical results are shown.

Keywords: Aeroelasticity, finite element method, incompressible fluid.

1. Introduction
The voice production mechanism is a complex pro-
cess consisting of a fluid-structure-acoustic interac-
tion problem, where the coupling between fluid flow,
viscoelastic tissue deformation and acoustics is cru-
cial, see [1]. The so-called phonation onset (flutter
instability) for a certain airflow rate with a certain
prephonatory position leads to the vocal folds oscilla-
tion. The important aspect of the phenomena is the
glottis closure (glottis is the narrowest part between
the vibrating vocal folds).

The considered problem can be mathematically de-
scribed as a problem of fluid-structure interaction with
the involvement of the (periodical) contact problem
of the vocal folds. In order to include the interactions
of the fluid flow with solid body deformation an the
contact problem, a simplified model problem is consid-
ered. This model is similar to the simplified two mass
model of the vocal folds of [2], see also the aeroelastic
model in [3].

In this paper the mathematical model is introduced
and the numerical approximation of the problem is
described, where the residual based stabilization is
used for the incompressible flow model. The simplified
lumped vocal fold model is considered, where the
contact is treated with the aid of the Hertz impact
forces. In the flow model, the contact is considered
with the combination of a suitable modification of
the inlet boundary condition and the concept of a
fictitious porous media flow. Attention is paid to the
details of the finite element approximations with the
aid of the ALE conservative method. The solution of
the system of equations is discussed, with attention on
the projection method and on the discrete projection
method. Numerical tests are presented.

2. Mathematical model
In this section a simplified model fluid-structure prob-
lem is considered. The domain occupied by fluid Ωt

is shown in Figure 1. The fluid flow is coupled with
the elastic structure deformation of a simplified two
degrees of freedom model of a vocal fold.

2.1. Flow problem
First, the air flow is modelled by the system of the
Navier-Stokes equations (cf. [4]) written in the ALE
conservative form (cf. [5])

1
JA

DA(JAρu)
Dt

+ ρ∇ · ((u−wD)⊗ u) = div τ f ,

∇ · u = 0, (1)

where u = (v1, v2) is the fluid velocity vector, ρ is the
constant fluid density, τ f = (τfij) is the fluid stress ten-
sor given by τ f = −pI+2µD, the symmetric gradient
tensor D = (dij) is given by D(u) = 1

2 (∇u+∇Tu),
p denotes the pressure and µ > 0 is the constant fluid
viscosity. Further, by At the Arbitrary Lagrangian-
Eulerian mapping is denoted which maps at any time
t ∈ [0, T ] the reference configuration Ωref = Ω0 onto
the current configuration Ωt, by JA the Jacobian
of this mapping is denoted, wD denotes the domain
velocity, and DAu

Dt is the ALE derivative, i.e. the
derivative with respect to the reference configuration
Ωref .
For the system (1) the initial and boundary con-

ditions are prescribed. The boundary conditions
are prescribed on the boundary ∂Ωf

t of the compu-
tational domain formed by mutually disjoint parts
∂Ωf

t = ΓI ∪ ΓS ∪ ΓO ∪ ΓWt, where ΓI denotes the
inlet, ΓO the outlet, ΓS the axis of symmetry and
ΓWt denotes either the fixed or the deformable wall.
The standard boundary conditions are prescribed at
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Figure 1. The computational domain Ωt with speci-
fication of the boundary parts.
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Figure 2. Two degrees of freedom model (with
masses m1, m2, m3) in displaced position (displace-
ments w1 and w2) The acting aerodynamic forces F1
and F2 are shown.

Γt = ΓWt ∪ΓWf formed of the fixed wall ΓWf (where
wD = 0) or the moving wall ΓWt - i.e. the surface of
the vocal fold model and at the axis of symmetry ΓS

a) u = wD on ΓWt,

b) u2 = 0,−τf12 = 0 on ΓS , (2)

as ΓS is chosen to be located at line y = const (in
computations we choose y = 0). Furthermore, at
the inlet ΓI and at the outlet part ΓO the boundary
conditions are formally prescribed as

c) ρ

2(u · n)−u− n · τ f = 1
ε

(u− uI) on ΓI ,

d) ρ

2(u · n)−u− n · τ f = prefn on ΓO, (3)

where n denotes the unit outward normal vector to
∂Ωft , uI is a prescribed inlet velocity, pref is a refer-
ence pressure value (pref = 0 in what follows), ε > 0 is
a penalization parameter and α− denotes the negative
part of a real number α. Here, the boundary condition
(3c) weakly imposes the Dirichlet boundary condition
u = uI with the aid of a penalization parameter ε.

2.2. Structure model
The motion of the vocal fold is modelled as a motion of
a rigid body governed by the displacements w1(t) and
w2(t) of the two masses m1 and m2, respectively (see
Fig. 2). The equation of motion (see [3] for details)
reads

Mẅ + Bẇ + Kw = −F , (4)

where M is the mass matrix of the system, K is the
diagonal stiffness matrix of the system characterized

by spring constants k1, k2, and B = ε1M+ ε2K, is the
matrix of the proportional structural damping, ε1, ε2
are the constants of the proportional damping. The
mass matrix is given by

M =
(
m1 + m3

4
m3
4

m3
4 m2 + m3

4

)
, K =

(
k1 0
0 k2

)
,

(5)
wherem1,m2,m3 are the masses shown in Fig. 2. The
components of F = (F1, F2)T are the aerodynamical
forces (downward positive) acting at masses m1 and
m2, see Fig. 2.

2.3. Coupling conditions
The aerodynamical forces F1, F2 are computed with
the aid of the aerodynamical lift force L(t) and the
aerodynamical torsional moment M(t) acting on the
surface of the structure ΓWt. The aerodynamical
lift force and the aerodynamical torsional moment
are evaluated with the aid of the mean (kinematic)
pressure p and the mean flow velocity u = (u1, u2) as
the integrals over the surface of the airfoil

L = −l
∫

ΓW t

τf2jnj dS, M = l

∫
ΓW t

τfijnjr
ort
i dS,

(6)
where l denotes the depth of the profile section, and
the vector rort has components rort

1 = −(x2 − xEA
2 ),

and rort
2 = x1 − xEA

1 , with (xEA
1 , xEA

2 ) being the posi-
tion of the structure elastic axis.
The displacement of the structure surface ΓWt is

determined in terms of w1, w2, and it is used as the
boundary condition for the displacement of any point
of the computational domain Ωref0 onto the domain Ωt.
Moreover, the domain velocity at ΓWt is determined
using the w1(t) and w2(t) obtained from solution of
the ordinary differential equations (4).

2.4. Treatment of the contact problem
In order to close of the fluid computational domain,
the idea of a fictitious porous media flow is employed.
It means that during the closing phase of the vocal
folds, the part of the structure domain (denoted by
Ωpt ) is assumed to be a domain of porous media flow,
see Fig. 3. The flow in the domain Ωpt is then assumed
to be governed by the modified equations

ρ

JA
DA(JAu)

Dt
+ρ∇· ((u−wD)⊗u) +αu = div τ f ,

(7)
where the coefficient α corresponds to the artificial
porosity of the medium, see [6]. The coefficient in
the porous media flow is usually chosen as α = µ

P
where µ is the dynamical viscosity of the fluid and
P is an artificial permeability coefficient, see [6]. In
practical computations equation (7) is solved in the
whole computational domain Ωt with α being zero at
all points outside of the porous media domain ΩPt and
being a positive constant (in this paper α was chosen
as 107) in the interior of ΩPt .
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Figure 3. The detail of the porous media flow domain
Ωp

t .

The porous media domain is determined by the
following procedure illustrated in Figure 3. First, the
actual gap g(t) at time t is computed as distance of
ΓWt from the axis of symmetry ΓS and compared to a
prescribed minimal gap threshold gmin. If g(t) ≥ gmin,
then the glottis is open and no porous media is used
(i.e. ΩP

t is empty and α ≡ 0). For g(t) < gmin
the y-displacement of the points of the surface of
ΓWt is modified in order to not violate the condition
g(t) ≥ gmin, i.e. these points are vertically displaced
by such a shift −∆w, which makes the actual gap
equal to g(t) = gmin.
For the structural model the Hertz impact forces

are used as specified in [3]. In this case, the right hand
side F of Eq. (4) is modified by the addition of the
Hertz impact force FH . The Hertz impact force is then
distributed to the both components of F depending
on the position xmax of the impact. The model of
Herz impact forces is given as

FH = kHδ
3/2(1 + bH δ̇), kH ≈

4
3

E

1− µ2
H

√
r,

where δ stands for the penetration of the vocal fold
through the contact plane, bH is a damping factor
(here set to zero), r is the radius of the osculating
circle (i.e. inverse of the curvature), E is Young’s
modulus of elasticity of the vocal fold and µH is its
Poisson’s ratio, for values see [3].

2.5. Mesh deformation
First, due to the motion of the structure, the trans-
formation of the computational domain (and mesh as
well) needs to be constructes at every time instant tk.
Here it is represented by the construction of the ALE
mapping At at every time instant t = tk. The ALE
mapping At is sought in the form of displacements
d = d(ξ, t) of points ξ of the original configuration,
i.e. At(ξ) = ξ + d(ξ, t). The boundary condition for
d is then known for every point of the boundary ∂Ω:

at ∂Ω \ ΓWt the displacement d = 0 and at ΓWt it
is determined by the already known (or estimated)
position of the structure surface ΓWt in terms of the
displacements w1 and w2. In order to determine d in
Ω a boundary value problem is solved, see e.g. [7].

3. Numerical approximation
In this section let us consider the computational do-
main Ωt and the ALE mapping At to be already
known and At to be sufficiently smooth at every time
instant t ∈ I = (0, T ). A similar assumption is made
about the domain velocity wD.

3.1. Weak formulation
In order to introduce the function spaces for velocity
and pressure, we start with defining the spaces for
velocity and pressure at the reference configuration.
We shall seek the velocity-pressure pair U = (u, p) at
any time instant t in the space Wt = Vt ×Qt, where
Qt = L2(Ωt) and

Vt = {ϕ ∈H1(Ωt) : ϕ · n = 0 at ΓS}.

Further, the weak formulation is derived using the
standard approach, i.e. we multiply equations (1)
by test functions z and q, integrate over Ωt and use
Green theorem. However, in the finite element con-
text such test functions are usually time independent,
whereas here the test functions are defined over the
time dependent domain Ωt and naturally must be
chosen as time dependent. To this end we first define
the test functions on the reference domain Ωref

0 , i.e.
we denote

X ref = {ϕ ∈H1(Ωref0 ) :
ϕ = 0 at ΓW ref

0
,

ϕ · n = 0 at ΓS
}. (8)

Next, these (reference) test functions are defined on
the current configuration Ωt with the aid of the ALE
mapping At, i.e. the test function z = z(x, t) can be
defined using a reference test function zref ∈ X ref

by

z(x, t) = zref (Atn+1(A−1
t (x))) ∀x ∈ Ωt, t ∈ (0, T ).

(9)
We shall denote the space of such test functions by X ,
i.e.

X = {z : z satisfy (9) for some zref ∈ X ref}. (10)

The space X is for any t subspace of Vt, and the
test functions from X are time independent when
transformed on the reference domain. This means
that their ALE derivative equals zero, i.e. for z ∈ X
we have

DAtz

Dt
= 0.

In what follows by the symbol (·, ·)M the dot prod-
uct in L2(M) or L2(M) is denoted. The weak form
is then derived in the standard form: we take test
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function V = (z, q) ∈ X ×Qt multiply the first equa-
tion (1) by test functions z and the second by q, sum
together, integrate over Ωt and use Green’s theorem
for viscous terms and the pressure gradient. Thus
we arrive to the weak form: Find U = (u, p) ∈ Wt

such that for any t ∈ (0, T ) u satisfy the boundary
condition (2a) and

d

dt
(ρu, z)Ωt

+ c(U ;U, V ) + B(U ;U, V ) (11)

b(U, V ) + b∗(U, V ) + d(U, V ) = LΓ(V ),

holds for any V = (z, q) ∈ X × Qt. The forms in
Eq. (11) are defined for any U = (u, p) ∈Wt, U =
(u, p) ∈Wt and V = (z, q) ∈ X ×Qt as follows: the
form d in Eq. (11) is defined by

b(U, V ) = (∇ · u, q)Ωt , b∗(U, V ) = −(∇ · z, p)Ωt ,

d(U, V ) =
∫

Ωt

2µdij(u)dij(z)dx

the boundary forms b, LΓ are given as

B(U ;U, V ) = 1
ε

(u, z)ΓI
+
(ρ

2(u · n)+u, z
)

ΓI∪ΓO

LΓ(V ) = 1
ε

(uI , z)ΓI
−
∫

ΓO

pref (n · z)dS

and the convective term is given by the skew-
symmetric trilinear form c (here we abbreviate w =
u−wD)

c(U ;U, V ) =
(
ρ

2 ((w · ∇)u, z
)

Ωt

−
(
ρ

2 ((w · ∇)z,u
)

Ωt

−
(
ρ

2 (∇ ·wD)u, z
)

Ωt

.

The time derivative terms arises from the identity∫
Ωt

1
JA

DA(JAu)
Dt

· zdx = d

dt
(u, z)Ωt

, (12)

which follows from (see [8])

DAJA

Dt
= JA(divwD). (13)

In what follows an equivalent integral form of equation
(13) shall be used in the form

d

dt

(∫
Vt

dx

)
=
∫
∂Vt

wD · ndS (14)

for any volume Vt whose motion is fully determined
by the ALE mapping, i.e. Vt = At(Vref0 ).

3.2. Time discretization
For the purpose of time discretization an equidistant
partition tj = j∆t of the time interval I with the
constant time step ∆t > 0 is considered and we denote
the approximations of velocity and pressure by uj ≈
u(·, tj) and pj ≈ p(·, tj) for j = 0, 1, . . . , uj ∈ Vtj
and pj ∈. Similarly, by JAj and wj

D the Jacobian

of the ALE mapping At at time instant tj and the
domain velocity at time instant tj is denoted. In
what follows we shall describe the discretization at
a fixed time instant tn+1. The time derivative on
the right hand side of equation (12) is approximated
at t = tn+1 formally by the second order backward
difference formula

1
JA

DA(JAu)
Dt

|tn+1 ≈ (15)

1
JAn+1

3JAn+1u
n+1 − 4JAn un + JAn−1u

n−1

2∆t

or more precisely the time derivative term from (11)
is approximated by

d

dt

(∫
Ωt

ρu · zdx
)
|tn+1 ≈M(U, V )− LM (V ) (16)

for U = (u, p) := (un+1, pn+1), V = (z, q) and with

M(U, V ) = 3
2∆t

(
un+1, z

)
Ωtn+1

, (17)

LM (V ) = 2
∆t (un, z)Ωtn

− 1
2∆t

(
un−1, z

)
Ωtn−1
(18)

where the test function z ∈ X is a time dependent
function defined by (9) with a given steady reference
function. Thus, the time discretized weak formulation
reads: Find U = (u, p) := (un+1, pn+1) such that u
satisfy the boundary condition (2a) and

a(U ;U, V ) = L(V ) (19)

holds for any V = (z, q) ∈ X ×Qtn+1 , where

a(U ;U, V ) = M(U, V ) + c(U ;U, V ) + B(U ;U, V )
+ b(U, V ) + b∗(U, V ) + d(U, V ), (20)

and
L(V ) = LM (V ) + LΓ(V ).

3.3. Finite element approximations
The spaces Vtn+1 and X are approximated using the
finite element subspaces Vh and X h constructed over
an admissible triangulation T∆ of the domain Ω, re-
spectively. Similarly, the pressure space Qtn+1 is ap-
proximated by its finite element subspace Qh con-
structed again over T∆. Here, the Taylor-Hood finite
elements are used, i.e. the spaces of continuous piece-
wise quadratic velocities and continuous piecewise
linear pressures are used, i.e. the velocities are sought
in

Vh = {ϕ ∈ C(Ω) : ϕ ∈ P 2(K)∀K ∈ T∆} ∩ V .

the space of the test functions is given by

X h = {ϕ ∈ C(Ω) : ϕ ∈ P 2(K)∀K ∈ T∆} ∩X .

and the trial/test pressure space is given as

Qh = {ϕ ∈ C(Ω) : ϕ ∈ P 1(K)∀K ∈ T∆}.
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The finite element approximations of u and p are
then sought in the finite element spaces Vh = Xh×Qh
constructed over an admissible triangulation τh of the
computational domain Ωf

t : Find an approximate so-
lution Uh = (u, p) ∈Wh such that Eq. (19) holds for
any test function Vh = (z, q) ∈ X h×Qh. Furthermore,
this formulation is stabilized using the SUPG/PSPG
stabilization terms together with the div-div stabiliza-
tion terms given as

S(U ;U, V ) =
∑
K∈T∆

δK(
ρ

3u
2∆t − µ4u+ ρ (w · ∇)u+∇p,Φ(U ;V )

)
K

F(U ;V ) =
∑
K∈T∆

δK

(
ρ

4ũn − ũn−1

2∆t ,Φ(U ;V )
)
K

P(U, V ) =
∑
K∈T∆

τK

(
∇ · u,∇ · z

)
K
,

where the modified test function is given by Φ(U ;V ) =
((u−wD) · ∇)z+∇q and δK , τK are suitably chosen
stabilization parameters, see e.g.

The stabilized discrete formulation then reads: Find
U = (u, p) ∈Wh such that

aS(U ;U, V ) = LS(U ;V ) (21)

holds for any test function V = (z, q) ∈ X h × Qh,
where

aS(U ;U, V ) = a(U ;U, V ) + P(U, V ) + S(U ;U, V ),

and
LS(U ;V ) = L(V ) + F(U ;V ).

3.4. Linearization
In order to solve the nonlinear problem (21), the
sequence of the linearized problem is solved until it
converges to a sufficient precision. We start with
an approximation U0 and for k = 0, 1, . . . solve the
linearized problems: Find U =: Uk+1 such that

aS(Uk;U, V ) = LS(Uk;V ) (22)

holds for any V = (z, q) ∈ X h ×Qh. Using the finite
element base functions the discretization leads to the
system of linear equations in the form of a saddle
point problem, i.e. in the form(

A B∗
BT Q

)(
αu

αp

)
=
(
f
g

)
, (23)

where the matrix A = M + D + C + AB + AS consists
of the mass matrix M, the diffusion matrix D, the
convection matrix C, the boundary terms matrix AB
and the stabilization matrix AS part arising from the
formsM , d, c, B and S, respectively. Matrix B∗ is the
discrete gradient operator. It corresponds to the form
b∗ including the stabilization terms, BT corresponds to
the discrete divergence operator realized by the form b

plus stabilization. The matrix Q follows fully from the
stabilization S, i.e. in particular for the case with no
stabilization the matrix Q = 0. The solution of such
a problem is difficult, see e.g. [9]. This is caused by
the presence of the continuity equation, which can be
treated at the continuous level by the approach based
on the projection method. On the other hand, this can
be understood as an approximation of the solution of
the system (23), or more precisely as preconditioned
iterative solution of this system.

4. Solution of the discrete
problem

4.1. Projection method
The projection method is based on the Helmholtz-
Hodge decomposition of any vector field v, i.e. v =
vdiv + ∇Ψ, where vdiv is the divergence free field,
see [10]. In this section, for the sake of simplicity,
we shall restrict ourselves to the case of the fixed
computational domain Ω and to the case of the first
order discretization in time. This means that here
we shall discuss the solution of the Navier-Stokes
equations in the form

ρ
∂u

∂t
+ ρ(u · ∇)u+∇p− µ4u = 0, ∇ · u = 0,

where the time derivative term is replaced by the
backward difference formula

ρ
∂u

∂t
≈ ρu

n+1 − un

∆t .

Here, the problem (24) can be sought using the segre-
gated approach, see [11]. This can be formally written
as
I. Solve momentum equations for ũ

ũ− un

∆t + (ũ · ∇)ũ− ν4ũ = f , (24)

II.Project ũ on the space of (discrete) divergence free
functions: Solve pressure equation

∇ · (∇p) = ∇ ·
(
ũ

∆t

)
, (25)

III.Update the velocity field by adding the pressure
gradient:

un+1 − ũ
∆t +∇p = 0. (26)

Let us mention that the steps I. and II. need to
be equipped with suitable boundary conditions. Due
to splitting the coupled equations, the boundary con-
ditions as presented in (3-2) require a modification.
Particularly the boundary conditions (2) contain pres-
sure, which is not available in the step I, but can
be used from the previous time step. The pressure
equation needs to be equipped by the Neumann type
boundary condition, where the compatibility condi-
tion needs to be satisfied for the existence of a solution,
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which is unique to a constant. Nevertheless, due to
splitting these two steps, the splitting error arises, for
overview see e.g. [12]. In the considered problem, the
main difficulty is in the realization of the non-standard
boundary conditions (2,3). To this end we shall con-
sider another possibility based on the preconditioned
solution of the discrete problem (23).

4.2. Discrete projection methods and
preconditioning

Let us consider the system of linear equations written
in the form

Mu = b.

where the matrix M is given as

M =
(

A B
BT 0

)
, b =

(
f
g

)
. (27)

This is the well studied case, where the matrix A is
(possibly) a non-symmetric positive definite and the
matrix B has full rank due to the Babuška-Brezzi
inf-sup condition satisfied. The matrix M can be
factorized as

M =
(

I 0
BTA−1 I

)(
A 0
0 S

)(
I A−1B
0 I

)
(28)

where S is the pressure Schur complement given as

S = −BTA−1B. (29)

The inverse matrix to the matrix M given (28) is
able to compute the inverse matrix to the matrix A
and the inverse to the Schur complement matrix S. In
order to solve the problem (27), the three sub-steps
can be followed similarly as in Section 4.1.
I. Solve the momentum equations for the intermediate
velocity field and update the right hand side for
pressure by subtracting the “divergence” of the
intermediate velocity field, i.e.

ũ := A−1f, g̃ := g − BT ũ.

II.Solve pressure equation Sp = g̃

III.Update the velocity field by adding a pressure
gradient component to the momentum equations

u = ũ− A−1(Bp)

In this process, the solution of the system with ma-
trix A and the matrix S needs to be realized. Here,
matrix A is a mass matrix perturbed with convection-
diffusion. The stabilization terms and the solution of
the system with the matrix A can be realized effec-
tively. However the solution of the system with the
Schur complement matrix S must be realized itera-
tively. This is why the above approach is used only
as a preconditioner for GMRES method, where the
matrix S is replaced by a suitable approximation, see
e.g. [13].

Figure 4. Detail of the mesh for the almost closed
glottal part.

In the considered discretization, the matrix of the
system is given by

M =
(

A BT
−B D

)
, b =

(
f
g

)
. (30)

where the matrix A is (possibly) a non-symmetric
positive definite, the matrix B has full rank and matrix
D is positive semidefinite. In this case the matrix M
can be factorized as

M =
(

I 0
−BA−1 I

)(
A 0
0 S1

)(
I A−1BT
0 I

)
(31)

where S1 is the pressure Schur complement given as
S1 = S + BA−1BT .

5. Numerical Results
First, the Oseen problem is considered

−ν4u+ b · ∇u+∇p+ αu = f , ∇ · u = 0

in the computational domain Ω = (0, 1)2. The prob-
lem is equipped with the Dirichlet boundary condition
u = b prescribed at ∂Ω. Here, α = 0 is used, b =
(sin(πx),−πy cos(πx)) and the right hand side f is
chosen in such a way that u = (sin(πx),−πy cos(πx))
is solution of the Oseen problem. The computations
were performed for different values of the viscosity
coefficient nu. First, the convergence of the Galerkin
finite element approximations uGh to the exact solu-
tion u = b is investigated, p(x, y) = sin(πx) cos(πy)
for ν = 0.05 (here, relatively high viscosity was cho-
sen in order to obtain stable Galerkin approximations
even on coarser meshes). For an approximation of the
flow problem, the Taylor Hood finite elements were
used. The errors in the H1 norm are shown in Table 1,
where by hmax the length of the maximal edge in the
triangulation is denoted. These results are compared
to the results of the stabilized formulation of the same
problem, which shows that the used residual based
stabilization does not pollute the solution, see Table 2.
The convergence orders in both cases agree well with
the theoretical estimate. For the stabilized method
such convergence rates are well preserved for the val-
ues ν = 10−3, . . . , 10−6 with a slow down observed
only for coarse grid configuration.
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hmax H1(u) H1(v) H1(p)

0.333174 0.148971 0.278814 0.824015
0.166358 0.0294769 0.0389521 0.306831
0.0881204 0.00751673 0.00970303 0.155735
0.0449673 0.00178417 0.00225841 0.0781441
0.0230627 0.000444434 0.00055994 0.038375
0.0118955 0.000107972 0.000139096 0.0192135

Order 2.14 2.17 1.07

Table 1. Convergence of Galerkin FE method to the
solution of the Oseen problem with convergence order
estimate

hmax H1(u) H1(v) H1(p)

0.333174 0.148971 0.278814 0.824015
0.158053 0.0385103 0.0479786 0.332202
0.0877183 0.00912475 0.0113478 0.162359
0.0451748 0.00239609 0.00279304 0.0821471
0.0235271 0.000593443 0.000695859 0.0402822
0.0119951 0.000148245 0.000174687 0.0201917

Order 2.06 2.05 1.03

Table 2. Convergence of Stabilized FE method to
the solution of the Oseen problem with convergence
order estimate

hmax H1(u) H1(v) H1(p)

0.333174 0.0895357 0.149882 0.764274
0.158053 0.0211092 0.033792 0.322219
0.0877183 0.00602738 0.00931535 0.160369
0.0451748 0.00158538 0.00240926 0.0810965
0.0235271 0.000394708 0.000603108 0.0397932

Order 1.94 2 1.16

Table 3. Convergence of Stabilized FE method to
the solution of the Navier-Stokes problem with con-
vergence order estimate
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Figure 5. The aeroelastic response in terms of w1(in
mm, top) and w2 (in mm, bottom) of the structure
for flow velocity U∞ = 0.65 m/s - phonation onset
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Figure 6. The aeroelastic response in terms of w1(in
mm, top) and w2 (in mm, bottom) of the structure
for flow velocity U∞ = 0.65 m/s - phonation phase
with almost periodical oscillations
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Figure 7. The aeroelastic response of the structure
in terms of w1(in mm, top) and w2 (in mm, bottom)
for flow velocity U∞ = 0.70 m/s - phonation onset
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Figure 8. The aeroelastic response in terms of w1(in
mm, top) and w2 (in mm, bottom) of the structure
for flow velocity U∞ = 0.70 m/s - phonation onset
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Figure 9. The flow velocity magnitude during the
opening and closing phase for the inlet flow velocity
U∞ = 0.65 m/s

Let us emphasize, that as the convection b equals
the exact solution u, the Dirichlet problem for Navier-
Stokes equations can be formulated with the same
analytical solution. This problem was solved as an
Navier-Stokes problem with a known analytical solu-
tion. One can really notice that b = u, and thus the
given u is the analytical solution of the Navier-Stokes
problem with the known Dirichlet boundary condition.
Similarly as above, the numerical approximation was
compared for both the stabilized and non-stabilized
method, with the results confirming the expected the-
oretical order of convergence in H1-norm, see Table 3
for the stabilized method.

Further, the method for the solution of FSI problem
with contact was realized and tested on a benchmark
problem from [14]. The results for the inflow velocity
U∞ = 0.65m/s are shown in terms of displacements
w1 and w2 in dependence on time in Figures 5-6. One
can easily see that the system becomes aeroelastically
unstable and the so called phonation onset phenomena
arises. With further continuation, the vibrating vocal
folds start to be influenced by their mutual contact,
see the vibrations resembling a limit cycle oscillations
in Figure 6. Similar behaviour is observed also for
the inflow velocity U∞ = 0.7m/s with a much faster
appearance of the contact. Figure 9 then shows the
details of the flow in terms of flow velocity in the
glottis region.

6. Conclusion
In this paper the mathematical description of a sim-
plified fluid-structure interaction problem arising in
the biomechanics of voice production was presented.
Special attention was paid to considering the contact
of the vibrating vocal folds, which was treated with
the aid of the Hertz impact forces, a suitable choice of
inlet boundary conditions and the use of a fictitious
porous media flow description. Attention was also
given to the numerical discretization of the problem,
to the solution of the linearized problem and to the
realization of the gap closing. The numerical tests
were shown to verify the theoretical error estimates

of the applied method and the numerical results of a
benchmark test problem were presented.
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