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Abstract. We deal with a mathematical model of a flow of an incompressible Newtonian fluid
through a channel with an artificial boundary condition on the outflow. We explain how several
artificial boundary conditions formally follow from appropriate variational formulations and the way
one expresses the dynamic stress tensor. Predominantly considered to be the most appropriate from
the physical point of view, does not enable one to derive an energy inequality, we explain how this
problem can be overcome by using variational inequalities. We derive a priori estimates, which are the
core of the proofs, and present theorems on the existence of solutions in the unsteady and steady cases.

Keywords: Variational inequality, Navier-Stokes equation, “do nothing” outflow boundary condition.

1. Introduction
1.1. The considered initial–boundary

value problem
We denote by Ω a Lipschitzian domain in R3, which
represents a channel. An incompressible Newtonian
fluid is supposed to flow into the channel through the
part Γ1 of the boundary ∂Ω and to flow essentially
out of the channel through the part Γ2 of ∂Ω. (See
Fig. 1.) By “essentially” we mean that we do not
exclude possible backward flows on Γ2. A fixed wall
of the channel is denoted by Γ0. The flow is described
by the equations of motion

∂tv + v · ∇v − div Sd +∇p = f , (1)
div v = 0, (2)
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Fig. 1 The channel.

where v denotes the velocity, p is the pressure, Sd is
the dynamic stress tensor and f represents an external
body force. For simplicity, we assume that the density
of the fluid is equal to one. We use the homogeneous
Dirichlet boundary condition

v = 0 on Γ0 × (0, T ), (3)

where (0, T ) is a time interval. The velocity on Γ1 can
be naturally assumed to be known, which yields the
inhomogeneous Dirichlet boundary condition

v = v∗ on Γ1 × (0, T ). (4)

On the other hand, since the velocity profile on Γ2
cannot be predicted in advance, it is logical to apply
some “artificial” boundary condition. There appear
various artificial boundary conditions in the litera-
ture, see e.g. [1–8]. Automatically following from an
appropriate weak formulation of the considered prob-
lem if one a priori assumes a sufficient regularity of a
solution, boundary conditions are usually called the
“do nothing” conditions. (See e.g. [1, 6, 9] for more
details.) An example, and probably the most often
used artificial boundary condition is

− pn+ ν
∂v

∂n
= g on Γ2 × (0, T ), (5)

where n denotes the outer normal vector field on
∂Ω, ν is the coefficient of viscosity and g is a given
function. The non–steady problem also contains the
initial condition

v = v0 in Ω× {0}. (6)

1.2. On some previous related
existential results

The existential theory for the system (1)–(6) is based
on appropriate a priori estimates. As the boundary
condition (5) admits a possible reverse flow on Γ2,
which may bring to Ω an arbitrarily large amount
of kinetic energy from the outside, the usual energy
inequality does not hold. This does not matter if the
given data of the problem are in an appropriate sense
“sufficiently small” or if the number T is “sufficiently
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small” in the non–steady case. (See [1, 9, 10].) The
existence of a weak solution of the problem (1)–(6)
on an arbitrarily large time interval for “large” data
(which is well known for the Navier–Stokes equations
with the Dirichlet or Navier boundary conditions on
∂Ω), is an open problem. A similar problem arises
if one studies a flow through a 2D turbine cascade,
see [3, 4]. Some authors use boundary conditions on
Γ2, modified in such a way that it enables one to
estimate the kinetic energy of the fluid flowing to Ω
through Γ2. Examples of such modifications can be
found in [2, 5, 7, 11, 12]. Another modification, used
in connection with the heat transfer, can be found in
[8].

A different approach has been suggested in papers
[13–15]. There the authors have considered the sta-
tionary and non-stationary problems and impose an
additional condition on Γ2, that enables one to es-
timate the kinetic energy of a possible reverse flow
and obtain an a priori estimate of the energy type.
However, the new additional condition implies that
the solution cannot lie in the whole Sobolev space
W 1,2(Ω), but only in a certain closed convex subset
of this space. Since one does not know in advance
whether the solution of the problem (1)–(5) falls into
this convex set, one must consider a variational in-
equality instead of the momentum equation.

Note that artificial boundary conditions on a part of
the boundary are also being used, if one approximates
a problem in an exterior domain D by a problem in
a bounded domain D ∩ BR(0) (for “large” R) and
prescribes an artificial boundary condition on ∂BR(0).
(See e.g. [16] and [17].)

2. Several boundary conditions
of the “do nothing” type

2.1. Three equivalent forms of the
dynamic stress tensor in
equation (1)

Since the difficulties, caused by the artificial boundary
conditions on Γ2, are of the same nature in stationary
and non-stationary problems, here we consider, for
simplicity, only the stationary problem. The dynamic
stress tensor Sd, in an incompressible Newtonian fluid,
equals 2νD, where D is the rate of the deformation
tensor. (It coincides with the symmetrized gradient
of velocity.) The term div Sd, which appears in equa-
tion (1), can be expressed by any of these formulas:

a) div Sd = ν∆v,
b) div Sd = ν div

[
∇v + (∇v)T

]
,

c) div Sd = −ν curl2v.

 (7)

2.2. Variational formulations of the
initial–boundary value problem

A variational formulation of the system (1), (2) with
the boundary conditions (3), (4) formally follows from
the classical formulation if one multiplies equation (1)

by a “smooth” test function φ, such that divφ = 0,
and integrates in Ω. As v should satisfy the Dirich-
let boundary conditions (3) and (4) on Γ0 and Γ1,
respectively, it is logical to assume that φ = 0 on
Γ0∪Γ1. On the other hand, one imposes no boundary
condition on φ on Γ2. Applying the integration by
parts, using the forms a) – c) of the dynamic stress
tensor, we successively obtain the equations

a)
∫

Ω

[
v · ∇v · φ+ ν∇v : ∇φ

]
dx

=
∫

Γ2

[−pn+ ν∇v · n] · φ dS +
∫

Ω
f · φ dx,

b)
∫

Ω

[
v · ∇v · φ+ ν(∇v + (∇v)T ) : ∇φ dx

=
∫

Γ2

[
−pn+ ν

(
∇v + (∇v)T

)
· n
]
· φ dS

+
∫

Ω
f · φ dx,

c)
∫

Ω

[
v · ∇v · φ+ ν curlv · curlφ

]
dx

=
∫

Γ2

[−pn− ν curlv × n] · φ dS

+
∫

Ω
f · φ dx.

However, the integrals on Γ2 cannot be involved by the
weak formulation because the integrands are generally
not integrable if one stays in the usual level of weak
solutions. This is why it is logical to neglect these
integrals or to replace them just by

∫
Γ2
g ·φ dS, where

g is an arbitrarily given function on Γ2. Then the
variational forms of the system (1), (2) are

a)
∫

Ω

[
v · ∇v · φ+ ν∇v : ∇φ

]
dx

=
∫

Γ2

g · φ dS +
∫

Ω
f · φ dx,

b)
∫

Ω

[
v · ∇v · φ+ ν

(
∇v + (∇v)T

)
: ∇φ

]
dx

=
∫

Γ2

g · φ dS +
∫

Ω
f · φ dx,

c)
∫

Ω

[
v · ∇v · φ+ ν curlv · curlφ

]
dx

=
∫

Γ2

g · φ dS +
∫

Ω
f · φ dx.



(8)

The equations should satisfy all functions φ with the
aforementioned properties and v should also satisfy
the boundary conditions (3) and (4). If a weak solution
v exists and is sufficiently smooth then, by a reverse
integration by parts, one can prove that there exists
an appropriate associated pressure p and show that v
and p satisfy the boundary conditions

a) −pn+ ν∇v · n = g,

b) −pn+ ν [∇v + (∇v)T ] · n = g,

c) −pn− ν curlv × n = g,

 (9)
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respectively, on Γ2. It is well known that the pressure
p in equation (1) is not unique, because p+ c, where
c is an arbitrary additional constant (or a function of
time), also satisfies the same equation. However, the
same consideration is not possible in the boundary
conditions a) – c) in (9). Here, it only follows from the
variational formulation that , one can choose only one
pressure p from all associated pressures, that satisfies
the boundary condition.

2.3. The momentum equation with the
Bernoulli pressure

None of the conditions a) – c) in (9) excludes a possible
reverse flow on Γ2 that could hypothetically bring an
arbitrarily large amount of the kinetic energy back to
Ω. One usually derives an a priori energy inequality
so that the momentum equation (1) is multiplied by
v and integrated over Ω. Then the flow of the kinetic
energy through Γ2 comes from the integral of (v·∇v)·v
. Applying the integration by parts, we can express
this integral as follows:∫

Ω
(v · ∇v) · v dx =

∫
∂Ω

(v · n) 1
2 |v|

2 dS

=
∫

Γ1

(v∗ · n) 1
2 |v
∗|2 dS +

∫
Γ2

(v · n) 1
2 |v|

2 dS.

(10)

The last integral can hypothetically take an arbitrarily
large value if v · n < 0 on the part of Γ2, i.e. in the
case of a reverse flow.
The situation is different if the nonlinear term in

equation (1) is considered in the form curlv × v +
∇ 1

2 |v|
2 and one involves ∇ 1

2 |v|
2 and p to the so called

Bernoulli pressure q := p + 1
2 |v|

2. Then, instead
of (9), one obtains from the integral equations (8) the
boundary conditions

a) −qn+ ν∇v · n = g,

b) −qn+ ν [∇v + (∇v)T ] · n = g,

c) −qn− ν curlv × n = g.

 (11)

Now, the nonlinear term in equation (1) is just
curlv × v (instead of v · ∇v), which yields the term∫

Ω curlv × v · φ dx in the variational formulation.
If one formally multiplies equation (1) by the ve-
locity v then the nonlinear term vanishes, because
(curlv × v) · v = 0. This has the following conse-
quences:

1) the nonlinear term curlv× v generates no back-
ward inflow of kinetic energy to Ω through the surface
Γ2,

2) the usual energy–type inequality can be derived,
3) the existence of a weak solution on an arbitrarily

long time interval can be proven by similar methods,
as if one considers the homogeneous or inhomogeneous
Dirichlet boundary condition on the whole boundary
∂Ω (see e.g. [18]).

2.4. Which artificial boundary
condition is the best?

There arises a natural question: which of the formu-
lated boundary conditions a) – c) in (9) and a) – c)
in (11) on Γ2 is most appropriate? The advantage
of all the conditions in (11) is that, in contrast to
the conditions from (9), they enable one to prove the
existence of a weak solution. On the other hand, the
condition a) from (9) is fulfilled (with g = 0) by the
Poiseuille flow in a circular pipe. This is mainly why
this condition is usually considered as the best from
a physical point of view. On the other hand, in any
of the formulated boundary conditions, one can al-
ways calculate an appropriate function g so that the
Poiseuille flow satisfies the considered condition with
this concrete function g. Thus, the suitability of the
chosen boundary condition probably depends only on
a particular situation. Moreover, in our opinion, it
would be very useful to perform numerical calculations
with various boundary conditions so that one could
compare the results among themselves and also with
physical measurements.

3. The Navier–Stokes inequality –
the non-steady case

In this section, we deal with the Navier–Stokes prob-
lem (1)–(4) in Ω with the boundary condition (5) on
Γ2. Due to the reasons, explained in Sections 1 and 2,
we study the problem in the form of a variational
inequality.

3.1. Notation
(i) We use the usual notation of the norms in the

Lebesgue spaces: ‖ . ‖r is the norm in Lr(Ω) or
in Lr(Ω) (the space of vector functions) or in
Lr(Ω)3×3 (the space of tensorial functions). By
analogy, ‖ . ‖k,r denotes the norm in the Sobolev
spaceW k,r(Ω) orW k,r(Ω) orW k,r(Ω)3×3. If the
norm is related to another set than Ω then we
denote it e.g. by ‖ . ‖r; Γ2 , etc.

(ii) We assume that v∗ is a given function on Γ1 ×
(0, T ), such that 1

2
∫

Γ1
[v∗ · (−n)] |v∗|2 dS (the

inflow of the kinetic energy to Ω through Γ1) is
bounded, as a function of t, for t ∈ (0, T ).

(iii) Furthermore, we assume that v∗ can be extended
to Ω×(0, T ) so that the extended function (which
is denoted by v∗ext) satisfies the boundary condi-
tion (3) on Γ0 × (0, T ) and a) v∗ext ∈ L∞

(
0, T ;

W 1,2(Ω)
)
and ∂tv∗ext ∈ L2(0, T ; W−1,2(Ω)

)
, b)

v∗ext is divergence–free. (Here, we denote by
W−1,2(Ω) the dual space to W 1,2(Ω). The du-
ality pairing between W−1,2(Ω) and W 1,2(Ω) is
denoted by 〈 . , . 〉.) Due to [19, Theorem I.3.1]
function v∗ext belongs to C0([0, T ]; L2(Ω)

)
.

(iv) We denote by V the linear space of all divergence–
free vector functions φ ∈W 1,2(Ω), such that φ =
0 on Γ0∪Γ1. Then v∗ext(t)+V (for a.a. t ∈ (0, T ))
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is the set of all functions φ from W 1,2(Ω), such
that divφ = 0, φ = 0 on Γ0 and φ = v∗ext(t) on
Γ1.

(v) Let ε1 > 0 and ζ ∈ L∞(0, T ) satisfy the inequality∥∥(v∗ext(t) ·n
)
− |v

∗
ext(t)|2

∥∥
1; Γ2

+ ε1 < ζ(t) (12)

for a.a. t ∈ (0, T ). (The subscript “−” denotes
the negative part.) Such number ε1 and function
ζ exist, because the trace of v∗ on Γ2×(0, T ) is in
L∞
(
0, T ; W 1/2,2(Γ2)

)
and this space is continu-

ously imbedded to L∞
(
0, T ; L4(Γ2)

)
. We denote

by Kt the set of all functions φ ∈ v∗ext(t) + V
such that∥∥(φ · n)− |φ|2‖1; Γ2 ≤ ζ(t) for a.a. t ∈ (0, T ),

(13)
byKc

t the convex hull ofKt and defineKc
t to be

the closure of Kc
t . Set Kc

t is the so called closed
convex hull ofKt. (See [20] for more properties of
the convex hull and the closed convex hull. Note
that Kc

t can also be defined as the intersection of
all closed convex sets in v∗ext(t) + V , containing
Kt.)

We assume that the number ε1, and the func-
tions v∗ext and ζ are fixed throughout the whole
paper. Using the presence of ε1 > 0 in inequal-
ity (12), one can also show that there exists ε2 > 0
such that Kc

t contains the ε2–neighborhood of
v∗ext(t), independently of t.

(vi) Denote by W (0, T ) the space
{
w ∈ L2(0, T ;

W 1,2(Ω)); ∂tw ∈ L2(0, T ; W−1,2(Ω))
}
with the

norm

|||w||| :=
(∫ T

0
‖w‖21,2 dt+

∫ T

0
‖∂tw‖2−1,2 dt

)1/2
.

Using [19, Theorem I.3.1], one can show that
W (0, T ) ⊂ C0([0, T ]; L2(Ω)

)
.

(vii) Put K c(0, T ) :=
{
w ∈ W (0, T ); w(t) ∈

Kc
t for a.a. t ∈ (0, T )

}
.

3.2. A formal derivation of the
variational inequality

Suppose that v, p is a sufficiently smooth solu-
tion of the problem (1)–(6) and w is a sufficiently
smooth function from [0, T ] such that w(t) ∈ Kc

t

for a.a. t ∈ [0, T ]. Using the form a) of the diver-
gence of the dynamic stress tensor in (7), multiplying
equation (1) by the difference w − v, integrating in
Ω×(0, T ), applying the integration by parts and using
the equality w − v = 0 on Γ0 ∪ Γ1 × (0, T ) and the
boundary condition (5), we get∫ T

0

∫
Ω

[∂tv + v · ∇v] · (w − v) dx dt

+
∫ T

0

∫
Ω
ν∇v : ∇(w − v) dx dt

=
∫ T

0

∫
Ω
f · (w − v) dx dt

+
∫ T

0

∫
Γ2

g · (w − v) dS dt. (14)

The term, which contains the derivative ∂tv, satisfies∫ T

0

∫
Ω
∂tv · (w − v) dx dt

=
∫ T

0

∫
Ω
∂t(v −w) · (w − v) dx dt

+
∫ T

0

∫
Ω
∂tw · (w − v) dx dt

= 1
2 ‖w(0)− v(0)‖22 −

1
2 ‖w(T )− v(T )‖22

+
∫ T

0

∫
Ω
∂tw · (w − v) dx dt

≤ 1
2 ‖w(0)− v0‖22

+
∫ T

0

∫
Ω
∂tw · (w − v) dx dt. (15)

Let w ∈ K c(0, T ) further on. Since∫
Ω
∂tw · (w − v) dx = 〈∂tw,w − v〉,∫
Ω
f · (w − v) dx = 〈f ,w − v〉,

(15) and (14) yield∫ T

0

〈
∂tw,w − v

〉
dt+

∫ T

0

∫
Ω
v · ∇v · (w − v) dx dt

+
∫ T

0

∫
Ω
ν∇v : ∇(w − v) dx dt

≥
∫ T

0
〈f ,w − v〉 dt+

∫ T

0

∫
Γ2

g · (w − v) dS dt

− 1
2 ‖w(0)− v0‖22. (16)

Since (16) is an inequality, we have the possibility
to choose another condition and to impose it on the
solution v: we require that the inclusion v(t) ∈ Kc

t

holds for a.a. t ∈ (0, T ).

3.3. Definition of the initial–boundary
value problem (P)

Let v∗ext be the extension of function v∗ with the
properties (i) and (ii) from paragraph 3.2. Let
v0 ∈ L2(Ω), div v0 = 0 in Ω in the sense of dis-
tributions, v0 · n = 0 on Γ0 and v0 · n = v∗(0) · n on
Γ1 in the sense of traces. Let f ∈ L2(0, T ; W−1,2(Ω))
and g ∈ L2(0, T ; L4/3(Γ2)). One looks for v ∈
L∞(0, T ; L2(Ω))∩L2(0, T ; W 1,2(Ω)) such that v(t) ∈
Kc
t for a.a. t ∈ (0, T ) and v satisfies inequality (16)

for all w ∈ K c(0, T ).
It is well known that for v0 ∈ L2(Ω), such that

div v0 ∈ L2(Ω) (which it definitely satisfies if v0 is
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divergence–free in the sense of distributions), the
scalar product v · n makes sense on ∂Ω, as an ele-
ment of W−1/2,2(∂Ω). (This follows e.g. from [21,
Theorem III.2.2].) Thus, the conditions v0 · n = 0 on
Γ0 and v0 · n = v∗(0) · n are assumed to hold on Γ0
and Γ1 as equalities in W−1/2,2(Γ0) and W−1/2,2(Γ1),
respectively.

The next theorem provides the information on the
existence of a solution of a problem (P) on an arbi-
trarily long time interval (0, T ).

Theorem 1. Let v0, v∗ext, f and g be the functions
with the aforementioned properties. Then problem
(P) is solvable. The solution can be expressed in the
form v = v∗ext + u, where u ∈ L∞(0, T ; L2(Ω)) ∩
L2(0, T ; V ) satisfies the inequality

‖u(t)‖22 + ν

∫ t

0
‖∇u(s)‖22 ds

≤ ‖u(0)‖22 −
∫ t∗

0

∫
Γ1

(v∗ · n) |v∗|2 dS dt

+ c1

∫ t

0
‖u(s)‖22 ds+

∫ t

0

[
c2 ‖f(s)‖2−1,2

+ c3 ‖v∗ext(s)‖21,2 + c4 ‖∂tv∗ext(s)‖2−1,2

+ c5 ‖g(s)‖24/3; Γ2

]
ds (17)

for all t in(0, T ), where all the constants c1–c5 are
independent of v0, v∗, v∗ext, f , g and u.

Note that there is a minus sign in front of the first inte-
gral on the right hand side, because n is the outer nor-
mal vector and therefore − 1

2
∫ t∗

0
∫

Γ1
(v∗ ·n) |v∗|2 dS dt

represents the inflow of the kinetic energy to Ω through
Γ1 in the time interval (0, t∗).
An analogous theorem, with a different convex set

Kc
t , has been proven in [15].

3.4. The principle of the proof and a
priori estimates

The complete way Theorem 1 can be proven consists
of these main steps: 1) construction of appropriate
approximations vn (for n ∈ N) of solution v, 2) deriva-
tion of a series of estimates of the approximations, 3)
derivation of various types of convergence of a subse-
quence of {vn} in various spaces, 4) verification that
the limit is the solution v. Among others, one also
needs the strong convergence in L2(0, T ; W 1,2(Ω)),
which follows from an estimate of a fractional deriva-
tive with respect to t of vn and from the Lions–Aubin
lemma, see e.g. [22]. Since the complete estimates
of the approximations are laborious, technically com-
plicated and necessarily influenced by the technique,
used just for the construction of the approximations,
we show below on an a priori level how one can directly
obtain from the variational inequality the estimates of
u in L∞(0, T ; L2(Ω)) and in L2(0, T ; W 1,2(Ω)). The
advantage of a priori estimates is that they enable
one to abstract from the whole machinery, which is

necessary in the proof of existence of the approxima-
tions. On the other hand, we assume, just inside the
procedure, that u is smooth. (This formal assumption
is naturally satisfied on the level of approximations.)
Thus, let t∗ ∈ (0, T ), α ∈ (0, 1) and δ > 0 be so

small that t∗+δ < T . Define function η of one variable
t by the formulas

η(t) =


α for 0 < t ≤ t∗,

α+ (1− α)
δ

(t− t∗) for t∗ < t < t∗ + δ,

1 for t∗ + δ ≤ t < T.

(Function η is continuous on (0, T ), constant on (0, t∗]
and on [t∗ + δ, T ) and linear on [t∗, t∗ + δ].) Solution
v can be expressed in the form v = v∗ext + u, where
u ∈ V . Put w := v∗ext + ηu = (1− η)v∗ext + ηv. (As
set K c(0, T ) is convex and 0 < η ≤ 1, w belongs to
K c(0, T ).) Then w − v = (η − 1)u (which equals 0
on the interval [t∗ + δ, T )). Substituting this to the
first term in (16), we obtain∫ T

0

〈
∂tw,w − v

〉
dt

=
∫ t∗

0

〈
∂t(v∗ext + αu), (α− 1)u

〉
dt

+
∫ t∗+δ

t∗

〈
∂t(v∗ext + ηu), (η − 1)u

〉
dt

= (α− 1)
∫ t∗

0

〈
∂tv
∗
ext, u

〉
dt

+ α(α− 1)
∫ t∗

0

〈
∂tu, u

〉
dt

+
∫ t∗+δ

t∗

〈
∂tv
∗
ext, (η − 1)u

〉
dt

+
∫ t∗+δ

t∗

〈
∂t(ηu), ηu

〉
dt−

∫ t∗+δ

t∗

〈
η̇u, u

〉
dt

−
∫ t∗+δ

t∗

〈
η ∂tu, u

〉
dt

=
∫ t∗+δ

0
(η − 1)

〈
∂tv
∗
ext, u

〉
dt

+ α(α− 1)
2

(
‖u(t∗)‖22 − ‖u(0)‖22

)
+ 1

2
(
‖η(t∗ + δ)u(t∗ + δ)‖22 − ‖η(t∗)u(t∗)‖22

)
− 1− α

δ

∫ t∗+δ

t∗
‖u‖22 dt

− 1
2

∫ t∗+δ

t∗
η

d
dt ‖u‖

2
2 dt

=
∫ t∗+δ

0
(η − 1)

〈
∂tv
∗
ext, u

〉
dt

+ α(α− 1)
2

(
‖u(t∗)‖22 − ‖u(0)‖22

)
+ 1

2
(
‖η(t∗ + δ)u(t∗ + δ)‖22 − ‖η(t∗)u(t∗)‖22

)
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− 1− α
δ

∫ t∗+δ

t∗
‖u‖22 dt

− 1
2
(
η(t∗ + δ) ‖u(t∗ + δ)‖22 − η(t∗) ‖u(t∗)‖22

)
+ 1

2

∫ t∗+δ

t∗
η̇ ‖u‖22 dt

=
∫ t∗+δ

0
(η − 1)

〈
∂tv
∗
ext, u

〉
dt

+ α(α− 1)
2

(
‖u(t∗)‖22 − ‖u(0)‖22

)
+ 1

2
(
‖η(t∗ + δ)u(t∗ + δ)‖22 − ‖η(t∗)u(t∗)‖22

)
− 1− α

δ

∫ t∗+δ

t∗
‖u‖22 dt

− 1
2
(
η(t∗ + δ) ‖u(t∗ + δ)‖22 − η(t∗) ‖u(t∗)‖22

)
+ 1− α

2δ

∫ t∗+δ

t∗
‖u‖22 dt.

Considering δ → 0+, we get∫ T

0

〈
∂tw,w − v

〉
dt

= (α− 1)
∫ t∗

0
〈∂tv∗ext, u〉 dt

+ α2 − 1
2 ‖u(t∗)‖22 −

α(α− 1)
2 ‖u(0‖22.

Substituting this to (16), using v = v∗ext + u and
w = v∗ext + ηu in all other terms in (16), considering
δ → 0+, dividing the whole inequality by α−1 (which
is negative), and considering finally α → 0+, we
obtain∫ t∗

0
〈∂tv∗ext,u〉 dt+ 1

2 ‖u(t∗)‖22

+
∫ t∗

0

∫
Ω

(v∗ext + u) · ∇(v∗ext + u) · u dx dt

+
∫ t∗

0

∫
Ω
ν∇(v∗ext + u) : ∇u dx

≤
∫ t∗

0
〈f ,u〉 dt+

∫ t∗

0

∫
Γ2

g · u dS dt+ 1
2 ‖u(0)‖22,

1
2 ‖u(t∗)‖22 +

∫ t∗

0
ν ‖∇u‖22 dt

+
∫ t∗

0

∫
Ω

(v∗ext + u) · ∇(v∗ext + u) · (v∗ext + u) dx dt

+
∫ t∗

0
〈∂tv∗ext,u〉 dt

≤
∫ t∗

0

∫
Ω

(v∗ext + u) · ∇(v∗ext + u) · v∗ext dx dt

+
∫ t∗

0

∫
Ω
ν∇v∗ext : ∇u dx dt+

∫ t∗

0
〈f ,u〉 dt

+
∫ t∗

0

∫
Γ2

g · u dS dt+ 1
2 ‖u(0)‖22,

1
2 ‖u(t∗)‖22 +

∫ t∗

0
ν ‖∇u‖22 dt

+ 1
2

∫ t∗

0

∫
Γ1

(v∗ · n) |v∗|2 dS dt

+ 1
2

∫ t∗

0

∫
Γ2

[(v∗ext + u) · n] |v∗ext + u|2 dS dt

+
∫ t∗

0
〈∂tv∗ext,u〉 dt

≤
∫ t∗

0

∫
Ω

(
v∗ext · ∇v∗ext · v∗ext + v∗ext · ∇u · v∗ext

+ u · ∇v∗ext · v∗ext + u · ∇u · v∗ext
)

dx dt

+
∫ t∗

0

∫
Ω
ν∇v∗ext : ∇u dx dt+

∫ t∗

0
〈f ,u〉 dt

+
∫ t∗

0

∫
Γ2

g · u dS dt+ 1
2 ‖u(0)‖22.

Since ∣∣∣∣∫ t∗

0

∫
Ω
u · ∇u · v∗ext dx dt

∣∣∣∣
≤
∫ t∗

0
‖u‖3 ‖∇u‖2 ‖v∗ext‖6 dt

≤ c

∫ t∗

0
‖u‖3 ‖∇u‖2 ‖v∗ext‖1,2 dt

≤ c

∫ t∗

0
‖u‖3 ‖∇u‖2 dt

≤ c

∫ t∗

0
‖u‖1/22 ‖u‖1/26 ‖∇u‖2 dt

≤ c

∫ t∗

0
‖u‖1/22 ‖∇u‖3/22 dt

≤
∫ t∗

0

(
ξ ‖∇u‖22 + c(ξ) ‖u‖2

)
dt,

where c is a generic constant, we get

1
2 ‖u(t∗)‖22 + (ν − ξ)

∫ t∗

0
‖∇u‖22 dt

+ 1
2

∫ t∗

0

∫
Γ1

(v∗ · n) |v∗|2 dS dt+
∫ T

0
〈∂tv∗ext,u〉 dt

≤ 1
2

∫ t∗

0

∫
Γ2

[(v∗ext + u) · n]− |v∗ext + u|2 dS dt

+
∫ t∗

0

∫
Ω

(
v∗ext · ∇v∗ext · v∗ext + v∗ext · ∇u · v∗ext

+ u · ∇v∗ext · v∗ext
)

dx dt

+ c(ξ)
∫ t∗

0
‖u‖2 dt+

∫ t∗

0

∫
Ω
ν∇v∗ext : ∇u dx dt

+
∫ t∗

0
〈f ,u〉 dt

+
∫ T

0

∫
Γ2

g · u dS dt+ 1
2 ‖u(0)‖22. (18)

(Note that ξ > 0 can be chosen arbitrarily small.)
The first integral on the right hand side satisfies the
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inequality∫
Γ2

[(v∗ext + u) · n]− |v∗ext + u|2 dS

≤
(∫

Γ2

[(v∗ext + u) · n]3− dS
)1

3

·
(∫

Γ2

|v∗ext + u|3 dS
)2

3

. (19)

Since v∗ext + u ∈Kc
t , there exists a sequence {uk} in

Kc
t , such that uk → u (for k → ∞) in the norm of

W 1,2(Ω). Then we also have(∫
Γ2

[(v∗ext + u) · n]3− dS
)1

3

= lim
k→∞

(∫
Γ2

[(v∗ext + uk) · n]3− dS
)1

3

.

To each function uk, there exist finite families {θki}Nk
i=1

and {uki}Nk
i=1 in [0, 1] and Kt, respectively, such that

Nk∑
i=1

θki = 1 and uk =
Nk∑
i=1

θkiuki.

Then, applying Minkowski’s inequality, we get(∫
Γ2

[(v∗ext + uk) · n]3− dS
)1

3

=
(∫

Γ2

[Nk∑
i=1

θki(v∗ext + uki) · n
]3
−

dS
)1

3

≤
(∫

Γ2

Nk∑
i=1

[θki(v∗ext + uki) · n]3− dS
)1

3

≤
Nk∑
i=1

(∫
Γ2

[θki(v∗ext + uki) · n]3− dS
)1

3

=
Nk∑
i=1

θki

(∫
Γ2

[(v∗ext + uki) · n]3− dS
)1

3

≤
Nk∑
i=1

θkiζ = ζ.

Hence (∫
Γ2

[(v∗ext + u) · n]3− dS
)1

3

≤ ζ, (20)

too. Note that this is a crucial part, where we use the
fact that v∗ext +u lies in Kc

t . The estimates, following
from this information, are not available if one deals
with the Navier–Stokes equation instead of the Navier–
Stokes variational inequality (16). As there exists
a continuous operator of traces from the Sobolev–
Slobodetski spaceW 5/6,2(Ω) to L3(Γ2), which can be
deduced e.g. by means of [23], we have(∫

Γ2

[(v∗ext + u) · n]3− dS
)1

3
(∫

Γ2

|v∗ext + u|3 dS
)2

3

≤ ζ ‖v∗ext + u‖23; Γ2

≤ c ‖v∗ext + u‖25/6,2

≤ c ζ ‖v∗ext + u‖
1
3
2 ‖v∗ext + u‖

5
3
1,2

≤ c ζ ‖v∗ext + u‖
1
3
2
(
‖v∗ext‖

5
3
1,2 + ‖∇u‖

5
3
2
)

≤ ξ ‖∇u‖22 + c(ξ) ζ6 ‖v∗ext + u‖22 + ‖v∗ext‖21,2.

Recall that ζ ∈ L∞(0, T ). Substituting to (18), and
using also the estimates∫ t∗

0

∫
Ω
ν∇v∗ext : ∇u dx dt

≤
∫ t∗

0
ξ ‖∇u‖22 dt+ c(ξ) ν2

∫ t∗

0
‖∇v∗ext‖22 dt

=
∫ t∗

0
ξ ‖∇u‖22 dt+ c(ξ,v∗ext),∣∣∣∣∫ t∗

0
〈∂tv∗ext,u〉 dt

∣∣∣∣ ≤ ∫ t∗

0
‖∂tv∗ext‖−1,2 ‖u‖1,2 dt

≤ c

∫ t∗

0
‖∂tv∗ext‖−1,2 ‖∇u‖2 dt

≤
∫ t∗

0
ξ ‖∇u‖22 dt+ c(ξ)

∫ t∗

0
‖∂tv∗ext‖2−1,2 dt

=
∫ t∗

0
ξ ‖∇u‖22 dt+ c(ξ,v∗ext),∫ t∗

0

∫
Ω
v∗ext · ∇u · v∗ext dx dt

≤
∫ t∗

0
‖∇u‖2 ‖v∗ext‖24 dt

≤
∫ t∗

0
ξ ‖∇u‖22 dt+ c(ξ)

∫ t∗

0
‖v∗ext‖44 dt

=
∫ t∗

0
ξ ‖∇u‖22 dt+ c(ξ,v∗ext),∫ t∗

0

∫
Ω

(
v∗ext · ∇v∗ext · v∗ext + u · ∇v∗ext · v∗ext

)
dx dt

≤ c(v∗ext) +
∫ t∗

0

∫
Ω
‖u‖4 ‖∇v∗ext‖2 ‖v∗ext‖4 dt

≤
∫ t∗

0
ξ ‖∇u‖22 dt+ c(ξ,v∗ext),∫ t∗

0
〈f ,u〉 dt ≤

∫ t∗

0
‖f‖−1,2 ‖u‖1,2 dt

≤
∫ t∗

0
ξ ‖∇u‖22 dt+ c(ξ,f),∫ t∗

0

∫
Γ2

g · u dS dt ≤
∫ t∗

0
‖g‖4/3; Γ2 ‖u‖4; Γ2 dt

≤
∫ t∗

0
‖g‖4/3; Γ2 ‖u‖1,2 dt

≤ c

∫ t∗

0
‖g‖4/3; Γ2 ‖∇u‖2 dt

≤
∫ t∗

0
ξ ‖∇u‖22 + c(ξ, g),
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where c is independent of t∗, we obtain

1
2 ‖u(t∗)‖22 + (ν − 9ξ)

∫ t∗

0
‖∇u‖22 dt

+ 1
2

∫ t∗

0

∫
Γ1

(v∗ · n) |v∗|2 dS dt

≤ c(ξ)
∫ t∗

0
‖u‖2 dt+ c(ξ,v∗ext,f , g)+

+ c(ξ)
∫ t∗

0
ζ6(t)

(
‖v∗ext + u‖22 + ‖v∗ext‖21,2

)
dt

+ 1
2 ‖u(0)‖22. (21)

Choose ξ so small that ξ < 1
18ν. Evaluating pre-

cisely the right hand side (which concerns especially
c(ξ,v∗ext,f , g)), we can rewrite the inequality in the
form (17). Omitting at first the second term on the
left hand side (i.e. the integral of ‖∇u‖22) and applying
the generalized Gronwall inequality, we obtain the es-
timate of u in L∞(0, T ; L2(Ω)) in terms of the norms
of ζ(t), v∗ext, f and g in appropriate spaces, which
are all finite. Then, omitting the first term on the left
hand side in (21) and considering t∗ → T−, we obtain
the estimate of the norm of u in L2(0, T ; W 1,2(Ω)).

3.5. Remark
By analogy with [15], one can show that if v is a
solution of a problem (P) then there exists an as-
sociated pressure p as a distribution in Ω × (0, T ).
The pair (v, p) satisfies the equations (1), (2) in
the sense of distributions in Ω × (0, T ). If, more-
over, ∂tv ∈ L1(0, T ; W−1,2(Ω)) and one prescribes
p ∈ L1(0, T ) then the pressure p can be chosen so that∫

Ω p(t) dx = p(t) for a.a. t ∈ (0, T ).
Suppose now that the solution v has these a pos-

teriori properties: v ∈ L2(0, T ; W 2,2(Ω)), ∂tv, v ·
∇v, f ∈ L2(0, T ; L2(Ω)) and there exists ε3 > 0
such that all φ ∈ v(t) + V , whose distance from v(t)
in the W 1,2–norm is less than ε3, belong to Kc

t for
a.a. t ∈ (0, T ). (The last condition means that v(t)
lies “uniformly” in the interior of Kc

t .) Then one
can prove that the distribution p is regular and can
be represented by a function from L2(0, T ; W 1,2(Ω)).
Moreover, one can also find a function ϑ ∈ L2(0, T )
so that

ν
∂v

∂n
− (p+ ϑ)n = g (22)

holds a.e. in Γ2× (0, T ). This shows that the concrete
pressure, obtained from the variational inequality and
satisfying the outflow boundary condition on Γ2 ×
(0, T ), is unique in the sense that it cannot be changed
by adding an arbitrary constant (or a function of t).

4. The Navier–Stokes inequality –
the steady case

In both the non-steady and steady cases, the solu-
tion’s proof of existence relies on the construction of
appropriate approximations, the estimations of the

approximations that in some sense copy a priori esti-
mates, the deduction of various types of convergence
of a sequence (or a subsequence) of approximations
to some limit function, and the demonstration that
the limit is a solution whose existence one wants to
prove. As we have already mentioned in subsections
1.2 and 3.4, the crucial part is the derivation of a priori
estimates. In order to obtain appropriate estimates,
in the non–steady case, one can apply Gronwall–type
inequalities in order to obtain a uniform (in time)
estimate of the L2–norm of the solution and the es-
timate of

∫ T
0 ‖∇u‖

2
2 dt (see subsection 3.4). In the

steady case, the estimates substantially depend on
the properties of the extended function v∗ext, intro-
duced in subsection 3.1. Moreover, as follows from
estimate (25), we are able to prove the existence of the
steady solution only if ζ (which is now just a positive
number) is “sufficiently small” in comparison to ν.
(Recall the ζ estimates possible reverse flows on the
outflow part Γ2 of the boundary, see (13).)

The extended function v∗ext should now be naturally
time–independent, and should be constructed so that
the integral

∫
Ω u · ∇u · v

∗
ext dx is “sufficiently small”

in comparison with ‖∇u‖22 for all u ∈ V . The reasons
are the same as in the case of the steady Navier–Stokes
problem with inhomogeneous Dirichlet–type boundary
condition on the whole boundary of Ω, see e.g. [21,
Chapter IX] for the detailed explanation. It follows
from the paper [14] that this condition of “sufficient
smallness” of the aforementioned integral is in fact
not an obstacle. Concretely, it is shown in [14] that if
v∗ satisfies the condition

(?) v∗ can be extended from Γ1 onto the whole bound-
ary ∂Ω so that the extended function belongs to
W 1/2,2(∂Ω) is equal to zero on Γ0 and its flux
through ∂Ω is zero,

then the extension v∗ext can be constructed so that
given δ > 0, v∗ext ∈W

1,2(Ω), v∗ext is divergence–free
and∫

Ω
u1 · ∇u2 · v∗ext dx ≤ δ ‖∇u1‖2 ‖∇u2‖2 (23)

for all u1, u2 ∈ V . This is the analogue of the so
called Leray–Hopf inequality, see [21].
Let us show how the a priori estimate looks. Ob-

viously, in the steady case, ζ is just a number and
set Kc

t is independent of t. Hence we further on use
the notation Kc instead of Kc

t . The “steady state
version” of inequality (16) is∫

Ω
v · ∇v · (w − v) dx+

∫
Ω
ν∇v · ∇(w − v) dx

≥ 〈f ,w − v〉+
∫

Γ2

g · (w − v) dS. (24)

The solution v lies inKc and the inequality is required
to be satisfied for all w ∈Kc. Writing v in the form
v∗ext + u, where u ∈ V , using inequality (24) with
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w = v∗ext, and applying (19), (20) and (23), we obtain

∫
Ω
v · ∇v · (w − v) dx+

∫
Ω
ν∇v · ∇(w − v) dx

≥ 〈f ,w − v〉+
∫

Γ2

g · (w − v) dS,

ν ‖∇u‖22 +
∫

Ω
(v∗ext + u) · ∇(v∗ext + u) · (v∗ext + u) dx

≤
∫

Ω

[
ν∇v∗ext : ∇u

+ (v∗ext + u) · ∇(v∗ext + u) · v∗ext
]

dx

+ 〈f ,u〉+
∫

Γ2

g · u dS,

ν ‖∇u‖22 + 1
2

∫
Γ1

(v∗ · n) |v∗|2 dS

+ 1
2

∫
Γ2

[
(v∗ + u) · n

]
|v∗ + u|2 dS

≤
∫

Ω

[
ν∇v∗ext : ∇u+ v∗ext · ∇v∗ext · v∗ext

+ v∗ext · ∇u · v∗ext + u · ∇v∗ext · v∗ext

+ u · ∇u · v∗ext
]

dx+ 〈f ,u〉+
∫

Γ2

g · u dS,

ν ‖∇u‖22 ≤ −
1
2

∫
Γ1

(v∗ · n) |v∗|2 dS

+ 1
2

∫
Γ2

[
(v∗ + u) · n

]
− |v

∗ + u|2 dS

+
∫

Ω

[
ν∇v∗ext : ∇u+ v∗ext · ∇v∗ext · v∗ext

+ v∗ext · ∇u · v∗ext + u · ∇v∗ext · v∗ext
]

dx

+ δ ‖∇u‖22 + 〈f ,u〉+
∫

Γ2

g · u dS,

≤ −1
2

∫
Γ1

(v∗ · n) |v∗|2 dS + 1
2 ζ ‖v

∗ + u‖23; Γ2

+
∫

Ω

[
ν∇v∗ext : ∇u+ v∗ext · ∇v∗ext · v∗ext

+ v∗ext · ∇u · v∗ext + u · ∇v∗ext · v∗ext
]

dx

+ δ ‖∇u‖22 + 〈f ,u〉+
∫

Γ2

g · u dS,

≤ −1
2

∫
Γ1

(v∗ · n) |v∗|2 dS + ζ

2 c6 ‖v
∗
ext + u‖21,2

+
∫

Ω

[
ν∇v∗ext : ∇u+ v∗ext · ∇v∗ext · v∗ext

+ v∗ext · ∇u · v∗ext + u · ∇v∗ext · v∗ext
]

dx

+ δ ‖∇u‖22 + 〈f ,u〉+
∫

Γ2

g · u dS,

where c6 = c6(Ω). Writing only the terms with second
powers of u, which are decisive for the estimates, and
involving all other terms to a generic constant c, we
obtain

ν ‖∇u‖22 ≤ δ ‖∇u‖22 + c7 ζ ‖∇u‖22 + c, (25)

where c7 = c7(Ω). As δ > 0 can be chosen to be arbi-
trarily small, we observe that these inequalities yield
an a priori estimate of ‖∇u‖2 in terms of v∗, f and
g, provided that ζ > 0 is so small that c7ζ < ν. Obvi-
ously, in this case one also obtains an a priori estimate
of ‖v‖1,2 ≡ ‖v∗ext + u‖1,2. Under the aforementioned
condition on ζ, one can prove the existence of a weak
solution v ∈Kc of the variational inequality (24), ap-
plying the procedure sketched at the beginning of this
section. (See also [14] for the construction of appropri-
ate approximations and the detailed derivation of the
estimates on the level of approximations. However,
the convex set, used in paper [14], differs from Kc

used here.) Thus, we can formulate the theorem:

Theorem 2. Let functions v∗ ∈W 1/2,2(Γ1) (satisfy-
ing condition (?)), f ∈W−1,2(Ω) and g ∈ L4/3(Γ2)
be given. Let number ζ be so small that c7ζ < ν.
Then there exists v ∈ Kc, such that the variational
inequality (24) is satisfied for all w ∈Kc.

Recall that ζ is used in the definition of the convex set
Kc, see (12) and (13). The smaller is ζ, the smaller is
Kc and the narrower space is left for possible reverse
flows on Γ2.

5. Conclusion
The paper provides a mathematical model of flows
through a channel with an artificial boundary condi-
tion (5) on the outflow. Both unsteady and steady
cases are considered. The core of the model is the
variational inequalities (16) (in the unsteady case)
and (24) (in the steady case). Solutions are sought in
an appropriate closed convex subsets of relevant func-
tion spaces, defined by means of restrictions, imposed
on possible reverse flows on the outflow. The restrict-
ing conditions bound the kinetic energy, brought back
to Ω through Γ2 by the reverse flows. Consequently,
they enable one to derive energy–type a priori esti-
mates. Then, applying a relatively standard technique
(based e.g. on construction of appropriate approxima-
tions or some of the fixed point theorems), one can
come to the conclusion on the existence of solutions.
This confirms the sense of the used model and asso-
ciated variational inequalities, in contrast to models
based just on equations, where the existence of weak
or strong solutions is generally an open problem.

Except for the discussion on various boundary con-
ditions of the “do nothing” type (see paragraphs 2.2
and 2.3) and some a posteriori properties of solutions
(paragraph 3.5), we present a detailed description of a
priori estimates of solutions. These estimates clarify,
on the formal level, how the information that the solu-
tions belong to L∞(0, T ; L2(Ω)) ∩ L2(0, T ; W 1,2(Ω))
(in the unsteady case) orW 1,2(Ω) (in the steady case)
directly follows from the used variational inequalities,
regardless of other technicalities, connected e.g. with
possible approximations. Analogous estimates have
been obtained in a completely different and much
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more technical way (i.e. at first on the level of approx-
imations and then considering an appropriate limit
transition) in papers [14] and [15]. However, it must
be noted that while the convex set, corresponding to
our Kc

t , is defined in a rather artificial way in [14]
and [15], ourKc

t has a good physical sense. Naturally,
the change of set Kc

t requires a new technique in the
derivation of approximations.
We do not present any numerical justification of

our model. Nevertheless, we recall that correspond-
ing numerical experiments, also involving comparison
between various artificial boundary conditions on the
outflow, suggested in paragraphs 2.2 and 2.3, would
be very desirable and interesting.
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