
1 Introduction
The effects of shear lag can cause a significant increase

in the longitudinal stresses developed in steel box girders.
Previous investigations have shown that the extent of shear
lag within a flange plate is dependent on the ratio between
the axial stiffness and the shear stiffness of the plate. The
introduction of longitudinal stiffeners increases the axial stiff-
ness without changing the shear stiffness so that there is a
consequent increase in shear lag. Stiffeners are, of course,
introduced to increase the resistance of the compressed flange
to buckling. It has been proven in [1] that it is far more
advantageous, from the point of view of shear lag, if the flange
plate is stiffened with a layer of concrete that is made to act
compositely with the steel plate (Fig.1a). The necessary
composite action can be achieved by means of shear studs
welded to the steel plate.

Among many applications of composite arrangements,
the case of increasing the load carrying capacity of an exist-
ing steel box girder bridge may be mentioned as a special
example. The bottom flange plate in the hogging moment
regions over the internal supports of a continuous girder is
particularly susceptible to the effects of shear lag. The most

obvious way of strengthening these regions is to weld on more
longitudinal stiffeners in the compression zone of the bottom
flange. This will increase the buckling resistance of the flange,
but it will also accentuate the shear lag problem. An alter-
native method of strengthening an existing bridge girder is to
add a concrete layer to the compression flange so that it acts
compositely with the steel (Fig. 1b), which will increase the
buckling resistance while also controlling the shear lag effect.
Although the method is applicable primarily for strength-
ening an existing bridge, it may well provide an economic
alternative in the design of a new box girder.

A perfect connection between the steel flange and the
concrete layer exists, however, only theoretically. Although
there certainly will be an intention to benefit from full
composite interaction, the studs placed at regular distances,
which are commonly used as connectors at the present time,
exhibit some unavoidable deformability.

2 Governing equations
Shear flows sq and cq, and normal forces snx and cnx per

unit width act on a typical element of the steel flange sheet or
the concrete layer, respectively (see Fig. 2).

The equations governing the equilibrium in the longitudi-
nal direction are:
for the steel sheet (Fig. 2a)
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in which f is the shear acting in the longitudinal direction at
the interface between the steel flange and the concrete layer.

If the contribution of small traverse forces to the strains is
neglected, it may be written:
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Fig. 1: (a) Steel-concrete composite girder – simplified form of
cross section, (b) concrete layer added to the compression
bottom flange plate in the hogging moment regions
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where ts and tc are the thicknesses of the steel flange and the
concrete layer, respectively, �x and �y are the direct strains in
the longitudinal and transverse directions, respectively, and �
are the shear strains. E, G and � represent Young’s moduli,
the shear moduli and Poisson’s ratios, respectively; u are the
longitudinal displacements.

The general form of the condition of compatibility is as
follows:
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Substituting the strains from Eqs. (3)–(8) it is obtained:

for the steel:
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for the concrete layer:
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Substituting for the shear flows sq and cq from equations
(1) and (2):
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It may be assumed that the shear f acting between the steel
sheet and the concrete layer, being provided by deformable
connectors, is proportional to the mutual longitudinal slip
which occurs at the interface between the two components,
i.e.

f k u us c� �( ) (14)

where k is the connector stiffness.
Eq. (14) may be written in the form:
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The following Fourier series may express the searched
functions:
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where L is the effective span-length.

Eqs. (12), (13) and (15) can be written in the form:
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in which s j
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These relations represent a set of three equations for the
unknown functions s jN y( ), c jN y( ) and F yj( ), which can be
adjusted to the following system of two differential equations
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It follows from Eq. (22) that
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Fig. 2: Equilibrium conditions in the longitudinal direction



which substituted into Eq. (23) allows to obtain a differential
equation of the fourth order
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whose coefficients are
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The general solution of (26), if the case of complex roots
of the characteristic equation is assumed, is
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The amplitude function c jN y( ), according to Eq. (25), is
determined as
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3 Boundary and loading conditions
Shear lag analysis is carried out for loads, placed symmet-

rically on the girder cross-section. Thus, assuming the origin
of the traverse co-ordinate y to be taken at the mid-width of
the flange, i. e. at the axis of symmetry, then, because of the
symmetry

C Cj j3 4 0, ,� � (32)
so that from equations (28) and (30), the distributions across
the flange width of the normal forces in the steel flange and in
the concrete layer are governed by:
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The amplitude function governing the distribution of the
shear at the interface between the steel and concrete can be
expressed from equation (21) as
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It is seen that also this distribution is symmetrical about
the flange mid-width.

The values of the remaining constantsC j1, andC j2, can be
determined from the shear loading conditions at the edges of
the steel flange and the concrete layer.

Combining equations (1), (16), (18):
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so that (by integrating with respect to y) the shear flow in the
steel flange at any point may be expressed as:
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Similarly, the shear flow in the concrete layer, combining
equations (2), (17) and (18), is governed by the following
relation:
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Knowing the amplitudes s jN and c jN , the values of
the longitudinal normal forces per unit width s xn x y( , ) and
c xn x y( , ) may be determined from equations (16) and (17) for
any position on the flange. Also the shear flows s q x y( , ) and
c q x y( , ) at any point may be determined from equations (37)
and (39).

To evaluate the forces taken by the studs, the shear f acting
at the interface between the steel flange and the concrete
layer is to be determined according to equation (18). The am-
plitude function F yj ( ), describing the distribution of the shear
across the flange width, is determined – knowing constants
C j1, and C j2, – by equation (35).

5 Summary of calculations
For any particular girder with composite flanges, the first

step in the calculation of the shear lag effect is to determine
the value of coefficient Qe j, from equation (42). The value
Qe j, is then substituted into the right-hand side of equations
(45) to give the values of constants C j1, and C j2, , and, finally,
for any harmonic the amplitudes of all the functions are
required. These, in turn, are substituted into equations (16),
(17), (18), (37) and (39) to give the normal forces per unit
width, the shear acting at the interface between the steel and
concrete components, and the shear flows at any position on
the composite flange.

The corresponding value of the longitudinal stress in the
steel component of the flange is then given by:
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and the longitudinal stress in the concrete layer is obtained
as:
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Should the shear stress values also be required, then, hav-
ing evaluated the shear flows sq x y( , ) and cq x y( , ) at any point,
the shearing stress in the steel is obtained as:
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and the shear stress in the concrete layer is given by:
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6 Conclusions

This paper has described the development of an approxi-
mate analytical method for analysing the stress distribution in
the flanges of composite steel-concrete beams with deform-
able connectors. Its primary advantage is the closed form of
the results obtained and its ease of application. The method is
also very suitable for parametric studies investigating the
influences of various arrangements, and for optimisation
studies.

To conclude, it should be noted that – besides the
mechanical effects – the thermal effects can also play an im-
portant role in the structural performance of steel-concrete
composite beams, see, e.g., [2].
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Table 1: Values of the coefficient Qe j, for different tapes of loading
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