
1 Introduction
The complexity of present-day VLSI devices has risen

to millions of gates, and the chips are therefore becom-
ing untestable by standard manufacture external ATE (Auto-
mated Test Equipment) testers. The test lengths are rapidly
increasing, as are the testing times and the ATE memory
requirements. Hence the built-in self-test (BIST) has been es-
tablished as a necessary part of VLSI circuits. The circuit is
able to test itself by BIST without using any ATE equipment,
or when used together with an external tester, BIST signifi-
cantly reduces the test time and tester memory demands.

Many BIST techniques have been developed [1, 2]. The
vast majority of them use a pseudo-random pattern generator
(PRPG) to produce test vectors that detect the easy-to-detect
faults, which mostly represent more than 90 % of the total
faults. For the remaining faults, test vectors are either applied
externally, or they are generated by the BIST structure itself.

Linear feedback shift registers (LFSR) or cellular autom-
ata (CA) are mostly used as PRPGs, due to their simplicity and
good properties concerning implementation space demands
and the good fault coverage.

A general BIST structure is shown in Fig. 1. The patterns
are generated by a test pattern generator (TPG), then they are
fed to the circuit-under-test (CUT) and the circuit’s responses
are evaluated.

Test patterns may be applied to the circuit in paral-
lel, which is denoted as a test-per-clock BIST, or serially
(test-per-scan) [1].

The design of the TPG is of key importance for the whole
BIST, since it determines the fault coverage achieved and the
area overhead of the BIST equipment. A simple LFSR often
cannot ensure satisfactory fault coverage, thus it has to be aug-
mented in some way. The LFSR code word sequence is modi-
fied in some approaches to produce patterns that detect more
faults. These methods imply reseeding the LFSR during the
test, or possibly the generating polynomial is also modified
[3], or the LFSR patterns are modified by an additional logic
[4, 5, 7, 13].

The best results are produced by mixed-mode BIST meth-
ods. Here some of the PRPG patterns are applied to the
circuit unmodified to detect the easy-to-detect faults. After
that, either deterministic or somehow modified PRPG pat-
terns are generated to detect the remaining faults [2, 5, 6, 7].

The proper choice of a PRPG is very important in a case of
mixed-mode testing. It is desirable to detect as many faults as
possible by the PRPG, so that the additional logic is maxi-
mally reduced. This is the main issue addressed in this paper.
We introduce statistics on the stuck-at fault coverages for the
ISCAS [10, 11] and ITC’99 benchmarks [21], using different
PRPGs. The influence of the PRPG on the total BIST area
overhead is shown for the column-matching method [7, 13,
14], since this method enables high scalability, and the effects
of the generator type and test lengths can be demonstrated
here very well.

The paper is organized as follows: the basic principles of
PRPGs are introduced in Section 2, the statistics of fault
coverages are presented in Section 3, Section 4 briefly de-
scribes the mixed-mode BIST principles, together with the
column-matching BIST method and the results obtained
using this method. Section 5 concludes the paper.

2 The PRPG structure
Generally, PRPGs are simple sequential circuits generat-

ing code words, according to the generating polynomial [23].

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 47

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

Pseudorandom Testing – A Study of the
Effect of the Generator Type

P. Fišer, H. Kubátová

The test pattern generator produces test vectors that are applied to the tested circuit during pseudo-random testing of combinational circuits.
The nature of the generator thus directly influences the fault coverage achieved. In this paper we discuss the influence of the type
of pseudo-random pattern generator on stuck-at fault coverage. Linear feedback shift registers (LFSRs) are mostly used as test pattern
generators, and the generating polynomial is primitive to ensure the maximum period. We have shown that it is not necessary to use
primitive polynomials, and moreover that their using is even undesirable in most cases. This fact is documented by statistical graphs. The
necessity of the proper choice of a generating polynomial and an LFSR seed is shown here, by designing a mixed-mode BIST for the ISCAS
benchmarks.
An alternative to LFSRs are cellular automata (CA). We study the effectiveness of CA when used as pseudo-random pattern generators. The
observations are documented by statistical results.

Keywords: built-in self-test, diagnostics, testability, LFSR, test pattern generators, column-matching.

Fig. 1: The BIST scheme

These code words are then either fed directly to the CUT
inputs, or they are modified by some additional circuitry.

The most common PRPG structures are linear feedback shift
registers (LFSRs) or cellular automata (CA). An n-bit (n-stage)
LFSR is a linear sequential circuit consisting of D flip-flops
and XOR gates generating code words (patterns) of a cyclic
code. The structure of an n-stage LFSR-I (with internal XORs)
is shown in Fig. 2.

The register has n parallel outputs corresponding to the
outputs of the D flip-flops, and one flip-flop output can be
used as a serial output of a register.

The coefficients c1 � cn�1 express whether there exists (1)
a connection from the feedback to the corresponding XOR
gate or no connection (0). Thus it determines whether there is
a respective XOR gate present or the flip-flops are connected
directly. The feedbacks leading to the XOR gates are also
called taps.

The sequence of code words produced by an LFSR can be
described by a generating polynomial g(x) in GF(2n), [22].

g x x c x c x c xn
n

n
n

n() � � � � � �
�

�

�

�

1
1

2
2

1
1 1� .

If the generating polynomial is primitive, the LFSR has
a maximum period 2n

�1, thus it produces 2n
�1 different

patterns.

The initial state of the register (initial values of the flip-
-flops) is called the seed.

The second LFSR type, the LFSR-II is implemented with
XORs in the feedback. Its generating polynomial is dual to
the LFSR-I polynomial. Only LFSR-I will be considered in this
paper, since these LFSRs are mutually convertible.

Cellular automata are sequential structures similar to
LFSRs. Their periods are often shorter, but code words gener-
ated by CA are sometimes more suitable for test patterns with
preferred numbers of ones or zeros at the outputs.

An example of a CA performing multiplication of the
polynomials corresponding to code words by the polynomial
x+1 (rule 60 for each cell [19]) is shown in Fig. 3.

3 Fault coverage statistics
We have performed extensive experiments on the stan-

dard ISCAS benchmarks, both combinational benchmarks
[10] and full-scan versions of sequential benchmarks [11], to
determine the fault coverage achieved by a pseudo-random
test sequence generated by a PRPG. The FSIM fault simulator
[12] has been used in all the examples to determine the fault
coverage.

First we show that the testability and the fault coverage
achieved by a certain number of pseudo-random test vectors
strictly depend on the tested circuit. Knowledge of the test-
ability of the circuit for which the BIST is being designed can
help us to select properly the lengths of the BIST phases [20].

Then we demonstrate the effect of the generator type on
the stuck-at fault coverage, and show that the simplest LFSR
is sufficient for most of applications.

3.1 Pseudo-random testability of the circuits
A low area overhead and good speed of the designed BIST

strictly depend on the nature of the circuit, for which the
BIST is being designed. Pseudo-random testability of a partic-
ular circuit strictly depends on the number of hard-to-detect
faults. It is possible to apply an unmodified sequence of LFSR
code words to fully test some circuits in a reasonable number
of cycles, while some other circuits are particularly untestable
by this way.

We have studied the pseudo-random testability of the
ISCAS [10, 11] and ITC’99 [21] benchmarks, using standard
LFSRs. All the benchmarks were in their full-scan versions,
thus turned into combinational. Each benchmark was tested
1000 times using different LFSR polynomials and seeds. Both
the polynomials and the seeds were randomly generated,
while a satisfactory period length was ensured by a simulation
of the PRPG run. The number of LFSR bits was set to be equal
to the number of CUT inputs. The results of a simulation of a
selected set of benchmarks are shown in Table 1. The “i” col-
umn shows the number of the benchmark inputs (including
the scan path for sequential circuits), “range” indicates the
range of the encountered number of test patterns to fully test
the circuit (in those 1000 samples), while the statistical aver-
age value is shown in the last column. “K” stands for thou-
sands of patterns, “M” for millions, “G” for billions.

For some benchmarks the range has not been evaluated,
for an extremely large number of patterns needed to fully test
the circuit (more than 10 M).

48 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

Fig. 2: LFSR structure

Fig. 3: Example of a cellular automaton

bench i range avg

c17 5 2–33 4

c432 36 250–120 600

c499 41 300–6 K 1 200

c880 60 2 500–57 K 13 K

c1355 41 800–12 K 2 800

c1908 33 3 K–77 K 12 K

c2670 233 2.4 M–12.5 M 4.4 M

Table 1: Pseudo-random testability

It can be seen that the number of pseudo-random pat-
terns needed to fully test the circuits varies considerably. The
distribution of the number of required patterns follows the
curve shown in Fig.4. This particular curve corresponds to the
ISCAS c1908 circuit.

3.2 Influence of LFSR type on test length
An LFSR used as a pseudo-random pattern generator

is mostly based on the primitive generating polynomial to
provide the longest period of the code generated. In this
subsection we show that it is not necessary to use primitive
polynomials. We investigated the influence of the number of
LFSR taps on the testing capability. In particular, we studied
the number of patterns needed to test all the faults in a circuit
(like in Subsection 3.1), while varying the number and the
position of the LFSR taps. A satisfactory period for each gen-
erated LFSR was ensured by simulating its run. The results of
the experiment are shown in Fig. 5. Here the number of LFSR
cycles needed to cover all the stuck-at faults in the c1355
circuit is shown. 100 different LFSRs were generated ran-

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 49

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

bench i range avg

c3540 50 5 K–174 K 32 K

c5315 178 1 400–5 K 2 500

c6288 32 33–474 131

c7552 207 > 100 M

s27 7 2–192 29

s208.1 18 1 400–26 K 6 K

s298 17 100–1000 500

s344 24 60–1000 250

s349 24 70–1000 250

s382 24 150–2000 500

s386 13 1 400–15 K 3 600

s400 24 120–2000 500

s420.1 34 165 K–4 M 1.4 M

s444 24 130–2000 500

s510 25 300–2500 900

s526 24 5 K–67 K 19 K

s641 54 196 K–3.2 M 1 M

s713 54 294 K–3.4 M 1 M

s820 23 10 K–78 K 27 K

s832 23 9 K–75 K 27 K

s838 67 > 100 M

s953 45 15 K–98 K 46 K

s1196 32 196 K–3.2 M 1 M

s1238 32 21 K–489 K 118 K

s1423 91 9 K–138 K 55 K

s1488 14 2500–24 K 6 800

s1494 14 2200–23 K 5 K

s5378 214 50 K–196 K 82 K

s9234.1 247 6 M–30 M 15 M

s13207.1 700 97 K–879 K 329 K

s15850.1 611 > 10 M

s35932 1763 150–500 230

s38417 1664 > 10 M

s38584.1 1464 > 1 G

b01 7 1–1100 350

b02 5 1–1000 200

b03 34 30–2600 700

b04 77 14 K–330 K 60 K

b05 35 10 K–70 K 25 K

b06 11 1–1200 330

b07 50 220 K–10 M 3 M

bench i range avg

b08 30 2 K–60 K 13 K

b09 29 4 K–42 K 16 K

b10 28 300–5 K 1700

b11 38 12 K–160 K 50 K

b12 126 5–44 M 13 M

b13 63 700–15 K 5 K

b14 277 > 100 M

b15 485 > 100 M

b17 1452 > 100 M

b18 3307 > 100 M

b19 6666 > 100 M

b20 522 > 100 M

b21 522 > 100 M

b22 767 > 100 M

0 1000020000300004000050000600007000080000
0

50

100

150

200

250

300

350

c1908

F
re

q
u
en

c
y

LFSR Cycles

Fig. 4: Distribution of the number of patterns to achieve full fault
coverage for c1908

domly for each LFSR size, differing both in the tap positions
and the seed. Thus, for the circuit used (having 40 inputs)
3900 different LFSRs were produced (the x-axis – LFSR in
Fig. 5). LFSRs 0–99 correspond to 1-tap LFSRs, 100–199
correspond to 2-tap LFSRs, and so on. It can be observed that
the number of taps does not influence the fault coverage
capability at all; the test lengths are steadily distributed. Thus,
we can conclude that the most advantageous LFSR is one of
the 1-tap LFSRs, since its area overhead is the smallest (only
one feedback). A 1-tap LFSR having a satisfactory period
can be found in most cases. The use of primitive polynomials
thus becomes counterproductive, since the number of taps is
mostly greater than one here, and they do not make any
contribution.

4 Mixed-mode BIST principles
The number of faults detected by pseudo-random pat-

terns successively applied to the CUT follows the saturation
curve, see Fig. 6. Here the LFSR patterns were gradually ap-
plied to the s1196 ISCAS benchmark, while the number of
covered faults was recorded. It can be observed that 90 % of
the faults were covered in the first 1000 cycles, while 60 000
cycles were needed to achieve a complete fault coverage.

Thus, it is advantageous to apply a relatively small number
of pseudo-random patterns to cover the easy-to-detect faults,
and then produce several deterministic patterns to cover the
rest. This approach is called a mixed-mode BIST.

It is necessary to find a trade-off between the number of
pseudo-random and deterministic patterns. Moreover, the

fault coverage achieved. In all of these experiments the seeds
were generated randomly, with a steady distribution of 1’s and
0’s. On the other hand, when a “special” seed is chosen for a
cellular automaton, its fault covering properties will change
dramatically.

We performed an experiment similar to that shown in
Fig. 8, for the s838 ISCAS circuit using an LFSR and a CA,
once with a steady distribution of values in its seed, and once
with a seed having only one “1” value at a random position, so
that the weight of this seed was unbalanced. The four tests
were run for 500 cycles, and the distribution of the number of
undetected faults was measured. The results are shown in
Fig. 9. We can observe that the fault coverage of the LFSR

decreased rapidly for this special seed, but on the other hand
the variability of fault coverage of the CA increased, while in
some cases many more faults were covered by the vectors
produced by this CA (left-hand side).

This observation can be explained by unsteady distribu-
tion of weights, i.e. the probabilities of occurrence of the “1”
value on the PRPG outputs. The distribution of weights
for four 100-bit PRPGs running 1000 cycles is shown in
Fig. 10a–d.

We can see that for a randomly generated seed, for both
the LFSR and CA the weights near 0.5, thus there is a bal-
anced distribution of zeroes and ones in a test (Fig. 10a and c).

value and the rest are zeroes, the weights at the outputs are
shifted to the weight of the seed for this particular case
(Fig. 10b). The weights do not differ from each other too
much; the probabilities of zeroes and ones at all the outputs
are approximately equal. A 1-tap LFSR has been chosen here,
as it has been for all of our experiments. If a LFSR with a
bigger number of taps was chosen, all the weights would near
to 0.5, similarly to the case of a balanced seed. In Fig. 10d
the CA seeded with an unbalanced seed (having one “1”
value) is shown. The weights range from negligible values (all
zeroes) to more than 0.7. This is the case where the weighted
pattern testing can be advantageously applied.

4.2 Column-matching BIST
The column-matching BIST method is based on a trans-

formation of the PRPG code words into deterministic test
patterns pre-computed by some ATPG tool. This transforma-
tion is being done by a combinational block, called Output
Decoder. The method is designed for combinational or se-
quential full-scan circuits, thus the order of the test patterns
applied to the CUT is insignificant. Moreover, not all the
PRPG patterns have to be transformed into test patterns;
the excessive ones just do not test any new faults.

In our column-matching method we try to assign the
PRPG code words to the deterministic patterns, so that some
of the columns are equal. Then the decoding logic needed
to implement the matched column will be reduced to a
mere wire connecting the decoder output with its respective
input. The unmatched outputs have to be synthesized by
some Boolean minimizer. For a more detailed description, see
[13, 14].

This principle has been further extended to support
mixed-mode testing [7]. The BIST run is divided into two
disjoint phases. First, the circuit is tested using an unmodified
sequence of LFSR code words, detecting the easy-to-detect
faults. The deterministic test patterns for the rest of the faults
are computed by the Atalanta ATPG tool [15]. These vectors
are to be generated by several consecutive LFSR code words
and modified by the Decoder to obtain deterministic vectors.
There has to be some additional logic to control the switch
between the two phases. The switch is implemented as an ar-
ray of multiplexers, one for each CUT input. However we
attempt to eliminate the MUXes as well, by introducing direct
matches [7]. The structure of a mixed-mode BIST is shown in
Fig. 11.

The sequence of patterns is fed to the tested circuit and its
response is then evaluated by a multi-input shift register
(MISR).

4.3 Test lengths
It is clear that the choice of appropriate lengths of these

two phases is of key importance. The maximum number of
faults should be detected in the pseudo-random phase, while
its length should be acceptable. According to Fig. 6, most of
the faults can be detected by a few initial patterns, and for the
remaining faults deterministic patterns have to be produced.
The more faults remain undetected, the more ATPG vectors
are needed, which also complicates the Decoder design, in
terms of the area overhead. This can be compensated by a
longer run of the deterministic phase to some extent, but not
significantly.

The influence of the length of the initial phase on the final
result is illustrated by Table 2. The lengths of the two phases
are shown in the “rand / det.” column. After the “rand”
pseudo-random (unmodified) patterns were applied to the
CUT, “ud.” faults were left undetected and “vct.” deterministic
vectors were produced by the Atalanta ATPG tool to detect
them. 100% coverage of detectable stuck-at faults is consid-
ered in all the cases. Thus, the “ud.” column does not include
the number of redundant faults, which cannot be detected,
from the nature of the tested circuit. The deterministic vectors
are to be generated from additional “det.” LFSR patterns by
the Decoder. The area overhead of the BIST decoder synthe-
sized by a column-matching method is indicated in the “GEs”
column. It is described in terms of gate equivalents [16]. Only
the logic of the decoder and the switching logic is considered
and stated in this column, while the overhead of the PRPG
and BIST control logic is not included here.

52 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

LFSR

Decoder

Switch

CUT

MISR

TPG

mode

Fig. 11: Mixed-mode BIST structure

bench rand / det. ud. vct. GEs

c1355 500 / 500 31 12 70

1000 / 1000 8 1 15

c1908 1000 / 1000 46 30 46.5

2000 / 1000 19 10 7.5

c3540 1000 / 1000 33 22 15

2000 / 1000 8 8 7.5

5000 / 1000 3 3 6

s420 400 / 600 40 30 24.5

1000 / 1000 35 19 25.5

3000 / 1000 29 17 27

s526 500 / 500 21 17 30.5

1000 / 1000 12 11 4.5

2000 / 1000 7 6 4.5

s641 1000 / 500 12 9 21

3000 / 1000 8 7 15

5000 / 1000 7 6 16.5

s820 1000 / 1000 70 28 63

5000 / 5000 34 14 0

Table 2: Influence of test length

It can be seen that increasing length of the pseudo-ran-
dom phase decreases the BIST overhead to some extent. A
significant decrease in the overhead is achieved for a small in-
crease in the test length in some cases (c1355, c1908, s820).
Sometimes the improvement is negligible even when the test
length is increased significantly (s641, s838). Sometimes a
longer pseudo-random phase even causes an increase in the
area overhead (s420, s641). This is due to the fact that the
amount of test don’t cares decreases for smaller test size and
complicates the decoder synthesis [14].

4.4 Influence of the LFSR
The fault coverage achieved in the first phase is in-

fluenced not only by the number of pseudo-random test
patterns (the length of the pseudo-random phase). The num-
ber of detected faults also depends on the pseudo-random
sequence, so it is influenced by the LFSR (CA) polynomial
and seed. This is illustrated by Figs. 4 and 7. Significantly
different results are produced for different LFSRs, even when
the lengths of the phases are retained. For illustration, we
designed a BIST for the c1908 circuit. The pseudo-random
phase was run for 2000 cycles, the LFSR polynomial was set
constant (1-tap) and we repeatedly randomly reseeded it.
Then the deterministic phase was run for 1000 clock cycles.
The simulation results are shown in Table 3. Again, the “ud.”
column indicates the number of undetected faults in the first
phase, “vct.” gives the number of deterministic vectors and
“GEs” shows the complexity of the final BIST logic. The
entries are sorted by the number of undetected faults.

We can see that the complexity of the final circuit strictly
depends on the LFSR seed – it varies from 7.5 GEs up to
69 GEs.

It is not possible to compute a proper LFSR seed and/or
generating polynomial analytically for practical examples,
due to the complexity of this problem. Thus, in practice we
repeatedly reseed the polynomial and conduct the fault simu-
lation several times, while we pick out the best seed for further
processing. Fault simulation is often a very fast process, thus it
does not significantly influence the BIST design time.

5 Conclusions
We have discussed the influence of the pseudo-random

pattern generator type on its fault detection capability. Both
LFSRs and CA are studied, with either a random or a “spe-
cial” seed. The distribution of weights on the individual
PRPG outputs is shown for all cases, together with the fault
coverage curves obtained by the PRPGs.

We have shown that for a pseudo-random test-pattern
generation phase a 1-tap LFSR is mostly a good choice, due to
its satisfactory period length, fault coverage and minimal area
overhead.

The pseudo-random testability of the standard ISCAS and
ITC benchmarks is summarized in this paper, to help BIST
designers properly choose the desired pseudo-random test
lengths for these circuits.

The effects of generator type are illustrated on a
mixed-mode column-matching BIST synthesis. It directly in-
fluences the total complexity of the resulting BIST circuitry.
The claims were confirmed experimentally on a BIST design
for several ISCAS benchmarks, but the conclusions made can
be applied to any circuits.

Acknowledgment
This research was supported by grant GA 102/04/2137,

“Design of Highly Reliable Control Systems Built on Dynami-
cally Reconfigurable FPGAs” and MSM6840770014.

References
[1] Agrawal, V. K., Kime, C. R., Saluja, K. K.: “A Tutorial on

BIST, part 1: Principles”. IEEE Design & Test of Comput-
ers, Vol. 10, No. 1, March 1993, p. 73–83, “part 2: Appli-
cations”, No. 2, June 1993, p. 69–77.

[2] Touba, N. A., McCluskey, E. J.: “Synthesis Techniques
for Pseudo-Random Built-In Self-Test”. Technical Report,
(CSL TR # 96-704), Dept. of Electrical Engineering and
Computer Science, Stanford University, August 1996.

[3] Hellebrand, S. et al.: “Built-In Test for Circuits with
Scan Based on Reseeding of Multiple-Polynomial Linear
Feedback Shift Registers”. IEEE Trans. on Comp., Vol. 44,
No. 2, February 1995, p. 223–233.

[4] Hartmann, J., Kemnitz, G.: “How to Do Weighted Ran-
dom Testing for BIST”, Proc. of International Confer-
ence on Computer-Aided Design (ICCAD), p. 568–571,
1993.

[5] Chatterjee, M., Pradhan, D. K.: “A BIST Pattern Gener-
ator Design for Near-Perfect Fault Coverage”. IEEE
Transactions on Computers, Vol. 52, No. 12, December
2003, p. 1543–1558.

[6] Touba, N. A.: “Synthesis of Mapping Logic for Generat-
ing Transformed Pseudo-Random Patterns for BIST”,

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 53

Czech Technical University in Prague Acta Polytechnica Vol. 45 No. 2/2005

bench rand / det. ud. vct. GEs

s838 1000 / 1000 129 72 120

5000 / 1000 105 56 130

10000 / 1000 106 62 110

s1196 1000 / 1000 89 54 50.5

5000 / 1000 25 19 28.5

ud. vct. GEs ud. vct. GEs

19 10 7.5 33 15 37

21 9 19.5 34 16 33

24 13 23.5 36 18 38

26 15 28 37 20 40.5

26 13 25 39 22 53

28 15 37.5 44 26 40

28 14 22.5 46 22 42.5

30 14 36 48 24 44

32 16 31 52 28 63.5

33 17 27.5 62 34 69

Table 3: Influence of the LFSR seed

Proceedings of International Test Conference, 1995,
p. 674–682.

[7] Fišer, P., Kubátová, H.: “An Efficient Mixed-Mode BIST
Technique”. DDECS’04, Tatranská Lomnica (Slovakia),
18.–21. 4. 2004, p. 227–230.

[8] Aloke, K., Chaudhuri, D. P.: “Vector Space Theoretic
Analysis of Additive Cellular Automata and Its Applica-
tion of Pseudoexhaustive Test Pattern Generation”.
IEEE Transactions on Computers, Vol. 42, No. 3, March
1993, p. 340–352.

[9] Novák, O., Hlavička, J.: “Design of a Cellular Automaton
for Efficient Test Pattern Generation”. Proc. IEEE ETW
1998, Barcelona, Spain, p. 30–31.

[10] Brglez, F., Fujiwara, H.: “A Neutral Netlist of 10 Combi-
national Benchmark Circuits and a Target Translator in
Fortan”. Proc. of International Symposium on Circuits
and Systems, 1985, p. 663–698.

[11] Brglez, F., Bryan, D., Kozminski, K.: “Combinational
Profiles of Sequential Benchmark Circuits”. Proc. of In-
ternational Symposium of Circuits and Systems, 1989,
p. 1929–1934.

[12] Lee, H. K., Ha, D. S.: “An Efficient Forward Fault Simu-
lation Algorithm Based on the Parallel Pattern Single
Fault Propagation”. Proc. of the 1991 International Test
Conference, Oct. 1991, p. 946–955.

[13] Fišer, P., Hlavička, J.: “Column-Matching Based
BIST Design Method”. Proc. 7th IEEE European Test
Workshop (ETW’02), Corfu (Greece), 26.–29. 5. 2002,
p. 15-16.

[14] Fišer, P., Hlavička, J., Kubátová, H.: “Column-Match-
ing BIST Exploiting Test Don’t-Cares.” Proc. 8th IEEE
European Test Workshop (ETW’03), Maastricht (The
Netherlands), 25.–28. 5. 2003, p. 215–216.

[15] Lee, H. K., Ha, D. S.: “Atalanta: An Efficient ATPG for
Combinational Circuits”. Technical Report, 93-12, Dep’t
of Electrical Engineering, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia, 1993.

[16] De Micheli, G.: Synthesis and Optimization of Digital Cir-
cuits. McGraw-Hill, 1994.

[17] Hortensius, et al.: “Cellular Automata Circuits for
BIST”. IBM J. R&Dev, Vol. 34 (1990), No. 2/3,
p. 389–405.

[18] Novák, O.: “Pseudorandom, Weighted Random and
Pseudoexhaustive Test Patterns Generated in Universal
Cellular automata”. Springer: Lecture Notes in Computer
Science, 1667, September 1999, p. 303–320.

[19] Chaudhuri, P. P. et al.: Additive Cellular Automata Theory
and Applications. Volume I. IEEE Computer Society
Press, 1997, 340 p.

[20] Fišer, P., Kubátová, H.: “Influence of the Test Lengths
on Area Overhead in Mixed-Mode BIST”. Proceedings
9th Biennial Baltic Electronics Conference (BEC’04),
Tallinn (Estonia), 3.–6. 10. 2004, p. 201–204.

[21]Corno, F., Sonza Reorda, M., Squillero, G.: “RT-Level
ITC 99 Benchmarks and First ATPG Results”. IEEE De-
sign & Test of Computers, July-August 2000, p. 44–53.

[22] Adamek, J.: Foundations of Coding. John Wiley & Sons,
Inc. 1991, 336 p.

[23] Stroud, Ch. E.: A Designer’s Guide to Built-In Self-Test.
Kluwer Academic Publisher, London, 2002.

Ing. Petr Fišer
e-mail: fiserp@fel.cvut.cz

Ing. Hana Kubátová, CSc.
phone: +420 224 357 281
e-mail: kubatova@fel.cvut.cz

Dept. of Computer Science & Engineering

Czech Technical University in Prague
Karlovo nám. 13
121 35, Prague 2, Czech Republic

54 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 45 No. 2/2005 Czech Technical University in Prague

