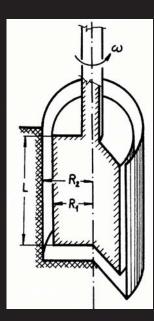
on a

the reference ted.



Combining Eqs.(3), (11) and (13) presented in [1], the following equation for shear rate can be obtained

$$\frac{\mathsf{R}_{\mathsf{l}}}{\mathsf{R}_{\mathsf{r}}} = \left[\frac{\mathsf{n}(\mathsf{l} - \kappa^{2} \mathsf{n})}{\mathsf{l} - \kappa^{2}} \right]^{\mathsf{n}} \stackrel{(2-2\mathsf{n})}{\dots} \tag{3}$$

From this equation it can be seen that the R_1/R_r ratio depends on n and κ . The dependence of R_1/R_r on n for selected values of ratio κ is shown in Fig. 2.

Comparison of R_1/R_r with the ratio of R_1 to the mean radius presented by Klein [2]

Again we can find radius R_r at which Newtonian and Bingham shear rates are the same by comparing equation (5) with the corresponding relation for a Newtonian fluid (2), and we get

From this equation it can be seen that ratio R_1/R_r depends on κ . The graphical form of this dependence is shown in Fig. 4.

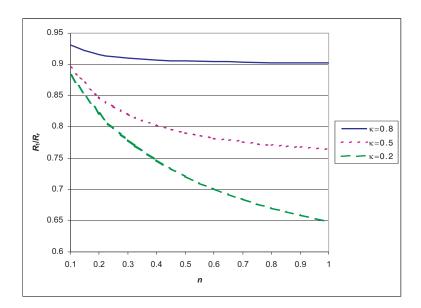


Fig. 2: Dependence of R_1/R_r on n for selected values of ratio κ

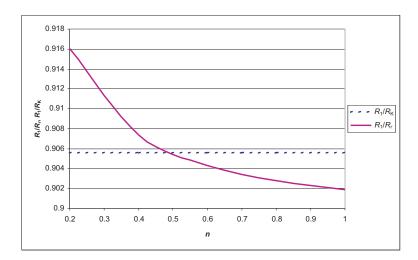


Fig. 3: Dependence of $R_1/R_{\rm K}$ resp. R_1/R_r on n

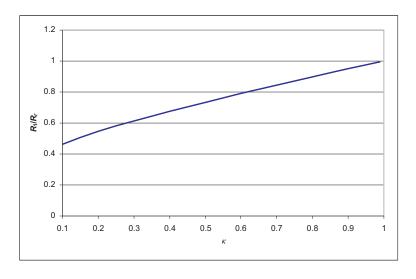


Fig. 4: Dependence of R_1/R_r on κ

3 Conclusion

On the basis of the above paragraph, the following procedure for evaluating the experimental data can be recommended:

- 1) If the logarithmic plot of shear stress τ_1 on Newtonian shear rate $\dot{\gamma}_{1\mathrm{N}}$ is linear (the slope is equal to flow index n) the power-law model can be used and we can calculate R_1/R_r from eq.(3). If the plot of shear stress τ_1 on the Newtonian shear rate $\dot{\gamma}_{1\mathrm{N}}$ is linear, the Bingham model can be used and we can calculate R_1/R_r from eq.(6).
- 2) The shear stresses and shear rates related to radius R_r can be calculated from experimental values τ_1 and $\dot{\gamma}_{1\mathrm{N}}$ using the following relations

$$\tau_r = \tau_1 \left(\frac{R_1}{R_r}\right)^2,\tag{7}$$

$$\dot{\gamma}_{rN} = \dot{\gamma}_r = \dot{\gamma}_{1N} \left(\frac{R_l}{R_r}\right)^2 \tag{8}$$

3) If the logarithmic plot of shear stress τ_r on shear rate $\dot{\gamma}_r$ is linear, the consistency coefficient K is τ -intercept and flow index n is the slope of a straight line. If plot of shear stress τ_r on shear rate $\dot{\gamma}_r$ is linear, the yield stress τ_0 is τ -intercept and plastic viscosity μ_p is the slope of a straight line.

4 Nomenclature

- K coefficient of consistency
- L length of cylinder
- n flow index
- r radial coordinate
- R_1 inner rotating cylinder radius
- R_2 outer stationary cylinder radius

- R_K radius presented by Klein
- R_r radius at which Newtonian and non-Newtonian shear rates are the same
- ν shear rate
- κ R_1/R_2 ratio
- $\mu_{\rm p}$ plastic viscosity
- ω angular velocity
- τ shear stress
- τ_0 yield stress

subscripts

- 1 at radius R_1
- r at radius R_r
- N Newtonian

Reference

- [1] Rieger, F.: Determination of Rheological Parameters from Measurements on a Viscometer with Coaxial Cylinders. *Acta Polytechnica*, Vol. **46** (2006), p. 42–51.
- [2] Klein, G.: Basic Principles of Rheology and the Application of Rheological Measurement Methods for Evaluating Ceramic Suspensions. In: *Ceramic Forum International Yearbook* 2005 (Edited by H. Reh). Baden-Baden: Göller Verlag, 2004, p. 31–42.

Prof. Ing. František Rieger, DrSc.

phone: +420 224 352 548

e-mail: frantisek.rieger@fs.cvut.cz.

Czech Technical University in Prague Faculty of Mechanical Engineering Technická 4

166 07 Praha 6, Czech Republic