1 Introduction

Sequences of the form (L jaJ)],EN for a > 1, now known as
Beatty sequences, were first studied in the context of the
famous problem of covering the set of positive integers by
disjoint sequences [1]. Further results in the direction of
so-called disjoint covering systems are due to [2], [3], [4] and
others. Other aspects of Beatty sequences were then studied,
such as their generation using graphs [5], their relation to
generating functions [6], [7], their substitution invariance [8],
[9], etc. A good source of references on Beatty sequences and

other related problems can be found in [10], [11].
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B'=Gf-Giy and B =G;f -G 4 )

The proof we give here is based on the algebraic expres-
sion for one-dimensional cut-and-project sets [14]. Let 1/}, Vo
be straight lines in R? determined by vectors (f,-1) and
(B, —1), respectively. The projection of the square lattice 72 on
the line I/} along the direction of Vs is given by

(a,0) =(a + bf") %y + (a + bP) Xy, for (a,b) € 72,

1 1
-(B,—1) and X, =———(f',—1). For the de-
B-p B -p
scription of the projection of Z2 on 171 it suffices to consider
the set

where X; =

Z[Bl:={a +bp

The integral basis of this free abelian group is (1, 8'), and

a,beZ}

thus every element x of Z[' | has a unique expression in this
base. We will say that « is the rational part of x =a + 58" and b
is its irrational part. Since f' is a quadratic unit, Z[f' ]is a ring
and, moreover, it satisfies

BB =2[F] (6)

A cut-and-project set is the set of projections of points of

72 to /1, that are found in a strip of given bounded width,
parallel to the straight line I/;. Formally, for a bounded inter-
val Q we define

Q) ={a +bp'

a,beZ,a+bﬂeQ}

Note that a + b’ corresponds to the projection of the
point (a, b) to the straight line I/} along Vs, whereas a + bf
corresponds to the projection of the same lattice point to Vo
along ;.

Among the simple properties of the cut-and-project sets
that we use here are
Q-1 =-1+3Q), PEQ) =(pQ),
where the latter is a consequence of (6). If the interval Q is of
unit length, one can derive directly from the definition a sim-
pler expression for 2(€2). In particular, we have

2[0,0) ={a + bf|a + bB [0} ={bp —| bB ||b € Z}, (7)
where we use that the condition0 <« + b <1is satisfied if and
onlyifa =[-b8]=- b8 |

Let us mention that the above properties of one-dimen-

sional cut-and-project sets, and many others, are explained in

the review article [14].

3 Self-matching property of the graph
| jB | against
An important role in the study of the self-matching prop-
erties of the graph |_ ]ﬁj against j is played by the generalized
Fibonacci sequence (G;),cny, defined by (2) and (4), respec-
tively. It turns out that shifting the argument j of the function
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|_ B J by the integer G, results in shifting the value by G,_;, with
the exception of isolated mismatches with low frequency. The
first proposition is an easy consequence of the expressions of
B as an element of the ring Z[B]in the integral basis 1, 8,
given by (3) and (5).
Theorem 1
Let 8 €(0,1) satusfy ﬂz + mf =1and let (G;)i2q be defined by (2). Let
1 € N. Then for j € Z we have

| BG+Gi) | = JB ] +Gia + ()
where &;(]) € {O, (—1)”1}. The frequency of integers j for which the

value &;(j) is non-zero is equal to
#{jeZ‘—n <j<n,e()) ¢0} =ﬁi
2n +1 '

Proof. The first statement is trivial. For, we have
&()) =BG +G)|-LiBl-Gia =] jB-LiB ]+ BG -G |
-[B-LiJ+ v | efo. -,

The frequency p; is easily determined in the proof of
Theorem 1. Q

In the following theorem we determine the integers j for

®)

which ¢&;(j) is non-zero. From this, we easily derive the fre-

quency of such mismatches.

Theorem 2
With the notation of Theorem 1, we have
()= :
it (- otherwise,
where

_ -1
Ui:{kGl‘Jrl-l-LkﬁJGikEZ,kio}U{( 12) GL}

Before starting the proof, let us mention that for ¢ even,
the set U; can be written simply as
Ui = {kGZ‘Jrl‘f' LkﬂJ Gl‘k € Z}
For i odd, the element corresponding to k£ =0 is equal to -G,
instead of 0. The distinction according to the parity of i is
necessary here, since unlike the paper [12], we determine the
values of ¢,(j) for j € Z, not only for.
Proof. Itis convenient to distinguish two cases according to the
parity of .
e First let be even. It is obvious from (8), that ¢,(/) € {0, -1}
and
e(j)=-1 ifandonly if jB—| jB|<[0.8). 9)
Let us denote by M the set of all such j,
M={jez|jp-| jB|<0.8)}
= {j e Z‘k + jp €[0, ﬁi), for some k e Z}

http://ctn.cvut.cz/ap/
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Therefore M is formed by the irrational parts of the ele-
ments of the set

{k-+ jBk+ jB <[0.8) } = Z[0.4) = BZ[0,)
=(-BG; + G ){kB —| kB |k e Z},

where the last equality follows from (3) and (7). Separating
the irrational part we obtain

M = {kGl m + kGi—l + LkﬁJGz‘k € Z}
= {Gll_kﬁJ + kGH_l‘k € Z} =Ui'

where we have used the equations ﬁ’z +mp' =1land
mG; + Gig =Gy
e Now leti be odd. Then from (8), £,(j) € {0, -1} and
g(j)=1 ifandonly if jB —L]ﬁJ € [1—ﬁi, 1. (10)
Let us denote by M the set of all such j,
M={jez|jp-|jp]-1c[-8'0}
= {] IS Z‘k + B e [—/37:,0), for some k e Z}.
Therefore M is formed by the irrational parts of elements
of the set
{k+ jBlk-+ jB <1-B10)} =[-4'.0) = B'Z[-1,0)
=B"(1-2[0,) =(BG; ~Gi){hB ~ 4B | 1|k e Z}.
Separating the irrational part we obtain
M ={-kG;m —kG;_y —| kB |G; - G;|k e Z}
={-kGj1 —Gi( kB | +D|k e Z}
={kGa + Gk -D|keZ} =U;,
where we have used the equation

B2 +mp =1, mG; +G; 1 =G,y and - kB | =[BT,

Let us recall that the Weyl theorem [15] states that num-

bers of the form jo — |_ jaJ, J € Z, are uniformly distributed in
(0, 1) for every irrational a. Therefore the frequency of those
j € Z that satisfy jo — L jaJ el < (0,1) is equal to the length of
the interval I. Therefore one can derive from (9) and (10) that
the frequency of mismatches (non-zero values g,( 7)) is equal to
B, as stated by Theorem 1. a
If f €(0,1) is the quadratic unit satisfying 2 —mf8 =1,
then the considerations are even simpler, because expression
(5) does not depend on the parity of «. We state the result as
the following theorem.
Theorem 3
Let B (0,1) satisfy B2 —mp =—Land let (G;)7 be defined by (4).
ForieN, put

Vi ={kG;q — (L kB | + DG, |k € Z}.
Then for j € Z we have
| BG+G) | =] B+ Gia+ &),

© Czech Technical University Publishing House
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where

eiu):{o v eV

1 otherwise.

The density of the set U; of mismatches is equal to B

Proof. The proof follows the same lines as proofs of Theorems
1land 2. d

4 Conclusions

One-dimensional cut-and-project sets can be constructed
from Z? for every choice of straight lines 1/}, Vo, if they have ir-
rational slopes. However, in our proof of the self-matching
properties of the Beatty sequences we strongly use the alge-
braic ring structure of the set Z[#'} and its scaling invariance
with the factor ', namely f'Z[8]=Z[f'} For this, ' must nec-
essarily be a quadratic unit.

However, it is plausible that, even for other irrationals «,
some self-matching property is displayed by the graph L jaJ
against j. To show that, other methods would be necessary.
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