
1 Introduction and motivation
A detailed understanding and description of quantal and

classical phenomena has attracted the attention of many
mathematicians and physicists for a long time. Quantum
and classical mechanics are the best elaborated, understood
and examined parts of physics. Their mathematical setting
is concentrated around powerful artillery, which includes
differential geometry, spectral calculus, functional analyses,
group and representation theory, (co)homology techniques,
and so on.

The problem of how to get directly from classical dynam-
ics, represented by the system of second-order differential
equations of the Newton-Lagrange type,
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to the corresponding quantum dynamics was articulated
by Feynman, see Freeman Dyson’s editorial comment [1].
Standard approaches are based on canonical quantization
(Heisenberg-like and/or Schrödinger-like equations) or on
the Feynman path integral technique. All of these procedures
require in some sense Lagrangian � � �� � and/or
Hamiltonian � � �� � functions, such that
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Here we have imprecisely denoted the functional deriva-
tives of the underlying classical variational principles by �

�
�
x

and/or �
�
�
x . The fact that kinetic energy � is a time-independ-

ent quadratic form in velocities and/or the corresponding



fore it becomes important in the context of quantization. Vari-
ation uncovers the desired classical trajectory and, as a bonus,
also some kind of minimal surface. In section 4 we will
see how “umbilical strings” can be used to rearrange the
Feynman integral over the histories of the system to the sur-
face functional integral. String formulation has the big advan-
tage that it concerns components of the forces rather than
their potential. In section 5 we are able to compute the transi-
tion probability amplitude for a quantum system with friction
explicitly performing the surface functional integration. For
potential-generated forces, the “umbilical world-sheet” ap-
proach reduces to standard quantum mechanics.

This paper follows up ideas presented in my previous
work. Many facts briefly mentioned here can be consulted in
detail in [5, 6].

2 Lagrangian mechanics and the
two-form �

The physical content of classical mechanics is represented
by Newton’s dynamical law. Its formulation in general curvi-
linear coordinates (after resolving e.g. the initial holonomic
constraints) coincides with the Lagrange equations [7–10]:
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2 is the kinetic energy of
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is the i-th component

of a generalized force. In the special case when forces are
potential-generated
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one can introduce the Lagrangian function � � �� �

and write down the celebrated Euler-Lagrange equations.
Generalized coordinates { }qi cover some open patch of the

configuration space (n-dimensional manifold) M.

Let us trace out the importance of kinetic energy � in a
geometrical description of mechanics. Components Tab can
be interpreted as some Riemannian metric on M. Here the
fact that � is the quadratic function in the generalized veloci-
ties is absolutely crucial. After introducing a RLC-connection
� for such a metric (kinetic energy), one can rewrite (1) in the
closed form:

�
�

p
t
i

id
� , where p

q
i i:

�
�

�

�

� . (2)

We immediately realize that for the free case the system
evolves along a geodetic specified by the Riemannian connec-
tion�. This, hopefully, sheds some light on the phenomenon
called inertia.

In the Lagrangian picture, the space of all physical states is
the set of all admissible initial conditions for the differential

system (1). The initial condition specified at time t0 by the
generalized position q t q( )0 0� and velocity � ( )q t v0 0� , defines
a point (q0, v0, t0) in an extended tangent bundleTM � �. For
the extended tangent bundle coordinates we will use the
( )2 1n � -tuple� �q q v v tn n1 1, , , , , ,� � .

Let us express from (1) generalized accelerations as func-
tions of the remaining entries:

�� ( , �, , )
� �

( , �, )

q f q q t
q q

q q t

i i
i a

a

� �
�

�

�
�

�

�

�
�

�

�

�
�

�

�

� �

2 1

�

�

�

� �

�

� �

� � �

q q q
q

q ta a b
b

a� �
	


�

��

�
�
�

��

2 2

�
�

�
.

When identifying �qi with vi, we get instead of (1) the
system of (2n�1) first-order differential equations in the ex-
tended tangent bundle:

�q vi i� , � ( , , , )v f q v ti i� � , �t �1. (3)

The system above can be interpreted as a coordinate ex-
pression of a vector field on TM � �; down-to-earth, accord-
ing to (3) one can assign to any physical state (q, v, t) a tangent
vector
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The time evolution is represented by a curve in the ex-
tended tangent bundle (see Fig. 1)
� 	: [ ]� �� �TM , 	 � 	
 �	� ( )� �q q , v v� ( )	 ,

such that d
dt

� 	
� 	 � 	

( ) ( ) ( )� � .

We have just observed that classical dynamics is deter-
mined by the extended tangent bundle vector field �. Having
the function �( , , )q v t and the components of the generalized
force �( , , )q v t we can establish the two-form

� � � �� �� : ( )� � � � �� � �i
i

v
i iq t t q v tid d d d d d� . (5)
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Fig. 1: Time evolution in the Lagrangian picture is bedded in the
extended tangent bundle. At each physical state (q, v, t)
there is a uniquely prescribed vector � ( , , )q v t , which de-
fines the dynamics. Following its integral curves, the com-
plete time evolution is recovered





In the above class of all admissible “umbilical world-
-sheets” a stationary surface of the action

S S: ( ):� � �
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satisfies the following two equations:

boundary term: 0 � �
d
d	

� � , (8)

bulk term: 0 � ��
�
�

�
�
�d� � �

�

�	

�

�

, , . (9)

The first equation states that tangent vector d
d	

�

lies in the kernel of �. This means that the second edge
�( , )	 
 �1 of the sought stationary surface satisfies the initial
Newton-Lagrange differential system (6). By its definition,
it should be a classical trajectory �class that connects the
space-time events (q0, t0) and (q1, t1). The genuineness of
� 	 
class � ��( , )1 is obvious, and it does not depend on the
chosen auxiliary reference curve �ref .

The complete solution of the variational problem pro-
vides as a bonus also some stationary (also called minimal)
surface �min. It is anchored to the curves �ref and �class and is
trapped in between the “D-brane type” submanifolds( , )q t0 0 �

fixed and ( , )q t1 1 � fixed in the extended tangent bundle.
Whether such a stationary “umbilical” surface exists depends
on properties of the physical system under consideration.

4 Quantization: path versus surface
integral
In the case when classical dynamics (6) is “derivable” from

the Lepage one-form ��, i.e. � � d�� , one can use for quan-
tization the Feynman prescription [11, 12]. According to
Feynman, the probability amplitude of the transition of the

system from the space-time configuration (q0, t0) to (q1, t1) is
given as follows:
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The “path-summation” here is taken over the class � of all
admissible curves in TM � �, as drawn in Fig. 3. The expo-
nent in (10) is the standard curve integral of the one-form ��

over �. The questions of the measure [ ]�� and the proper
normalization of the probability amplitude are discussed in
the next section.

We have already noted that classical mechanics is only
� sensitive. On the other hand the sensitivity of quantum
mechanics on its one-form potential precursor �� is ultimate-
ly evident from the Feynman prescription. In what follows,
we propose some modifications to (10), leading to the re-
placement of �� by the two-form �. This will enable us to
“quantize” dissipative systems as well.

Our main trick is a simple rearrangement based on the
Stokes theorem. Down-to-earth, in the class � that enters the
“path-summation” in (10), there is one specially distinguished
curve, the classical trajectory. Using it, for any other � within
this class we get an oriented loop (cycle):

� � � � �� :� � � �1 0class .

Here �0 and �1 are arbitrarily chosen curves within the
“D-branes“ ( , )q t0 0 � fixed and ( , )q t1 1 � fixed, see Fig. 2. The
restriction of �� to any of these edge submanifolds is trivial,
therefore we can write:
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where Umb class� � ( ).�

(11)
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Fig. 3: Schematic picture of the class � � � � � �� 	 	 	 	: ( ( ), ( ), ), ( ) (� q q v v t q t q q tsuch that and0 0 1� �) � q1



Let us remind the reader that

� the integral of �� over the curve �class gives the value of the

classical action Sclass

� the existence of the “umbilical“ string � that connects �

and �class is determined by the topological (homological)
properties of the extended tangent bundle

� define Vol� as the “number“ of surfaces in Umb class�� )
containing � and �class as the subboundaries, assuming that

all elements of � are homotopically equivalent, Vol� be-
comes �-independent

Motivated by the trick (11) and assuming no topological
obstructions on the side of TM � � we can slightly rearrange
the transition amplitude (10) as follows:
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Here in the last line we have included the numerical
prefactor Vol�

�1 to normalization and, because the integrand
is only boundary dependent, the path integration was ex-
tended to the surface integration over the umbilical class
Umb Umb class� ( )� .

From formulas (12) and (13) we get the transition proba-
bility amplitude in the product form of the classic phase and
quantum corrections. In general, the role of d�� is played by
the distinguished two-form � and therefore we can presume
to express the contribution of the quantum corrections in any
case (including dissipativity) as follows:
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If we also have a suitable candidate for the classical phase,
we will be able to write:
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In my two previous papers [5, 6] I proposed for C.P. the
following procedure: first find the classical solution �class of
the problem (6), then split the forces into the potential-gener-
ated and the non-potential-generated parts, i.e.
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at third introduce subsidiary-like Lagrangian � �� using the
potential � and express the C.P. term in the form:
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This procedure, however, seems not to be absolutely cor-
rect. Lack of the classical limit becomes more-or-less apparent
here (see the results in the next section). When varying of the
above term we do not get back the initial differential system
(6). The classical limit, or equivalently, the classical time evo-
lution of the expectation values of the corresponding physical
operators (Ehrenfest theorem) is achieved only in the regime
where � i

rest can be treated as small perturbations to poten-
tial-generated forces. Thus, (15) with the C.P. term of the
form (16) can serve as a type of effective perturbation theory
when the perturbations are not potential-generated.

5 An example: quantum mechanics
with friction

Let us focus on the perturbation-like quantization of
the dynamics of a unit mass particle moving in M x� �[ ],
which is driven by the conservative force � �� � d

dx x( ) along
with the friction �

rest � �� v. The extended tangent bundle
T x v t� �[ , ] [ ]� corresponds to an ordinary three-dimensional
Cartesian space. The distinguished two-form takes the simple
form
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Our aim is to evaluate the transition amplitude as a func-
tion of the initial and final events. Suppose we have chosen
a solution � 	 	 	 	 	class class class class( ) ( ( ), ( ) � ( ), )� � �x v x t of the
Newton-Lagrange equation of motion:

�� ( ) �x x x� �� � , which respect the initial and final conditions:
x t qclass( )0 0� and x t qclass( )1 1� .

Direct application of formula (15) then leads to the follow-
ing expression:
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Fig. 4: Schematic picture of the nodal grid, points marked with empty circles are constrained by (18).

To evaluate the world-sheet functional integral entering the above formula, let us introduce a grid in the underlying para-
metric space t t0 1
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can be discretized by evaluating its coordinate functions at the nodes of the considered grid � �( , )a b nodes , i.e.
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Therefore, formally, the functional integral over all possible string configurations is a formal limit of the ordinary integrals
taking them over all unconstrained variables in the ensemble� �� ( , )a b , i.e.:
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When step-wisely discretizing the integrals in the exponent of (17), taking into account the constraints (18), we get for the
bulk term (everything is done with respect to the chosen orientation of the “umbilical“ world-sheet �):
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5.1  Free particle with damping
Putting together all fragments that enter formula (19) and

taking into account the required normalization conditions, we
arrive at the following probability amplitude:
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A short inspection of (20) discloses that if � � 0, then
� � �( )t t1 0 and the above amplitude A( , ; , )q t q t0 0 1 1 coincides
with the ordinary quantum propagator for a free particle.

Let us perform an analysis of the time evolution in terms
of the transition probability amplitude (20) From the point of
view of quantum mechanics, the best fit of a unit mass particle
with the classical initial condition (q v v t0 0 0 00 0� � �, , ) is the
Gaussian wave-packet
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with some initial width �. At a later time t, the system under
consideration will be characterized by the convoluted wave-
-packet distribution
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It preserves its Gaussian shape, and its main characteris-
tics, the mean value of the position x and the actual width of
the wave-packet �2, vary with time according to
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, i.e. it decreases for t�1 expo-

nentially, as one would predict on classical intuition.

5.2  Damped harmonic oscillator
The probability amplitude for a damped harmonic oscil-

lator with unit mass requires a solution of Newton’s equation
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2

4
.

When substituting the general �(x) in (19) by the oscillator
potential 1

2
2 2w x and doing simple algebraic manipulations,

we arrive at:
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Putting everything together, integrating over all variables apart subensemble� �x a L( , ) and returning back to the continuum
limit, we get the following expression for the transition amplitude:

� �A( , ; , ) expq t q t
i

v x

t

t

0 0 1 1

0

1

"
	



�

�
�

�

�
�

�
�

!�
d class class	 � [ ( )]exp � ( )�x

i
x x x v

t

t

	 	 �
�

d class
1
2

2

0

1

� �	


�

�
�
�

	



�

�
�

�

! � �
�

�
�

! . (19)

The phase factor in front of (19) comes from the definition of the classical action Sclass
� and from the world-sheet

functional integration. The second term is the standard Feynman path integral, which is taken over the histories
{ ( ( ): ( , ), )}	 	 	 
 	� x x t� � �1 in the extended configuration space �[x]×�[t]. However, in comparison with the standard for-
mula, a new term appears here. It is an external source generated by the classical velocity vclass .

Let us remind the reader how to treat ugly infinite constants emerging in the functional integration. If the entering infinities
are functionally independent of the coordinates of space-time events, then one can easily neglect them. The only important
term inside the functional integral is the phase factor, which depends on the coordinates of ( , )q t0 0 and ( , )q t1 1 , i.e. we need to
seize the following quantity:
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anything else is just an inherited rudiment. The proper normalization of the amplitude A( , ; , )q t q t0 0 1 1 is dictated by its physical
meaning. The square of its absolute value answers the question about the probability density of observing a particle in a suffi-
ciently small neighborhood of the configuration ( , )q t1 1 , when before it was observed in a neighborhood of the space-time posi-
tion ( , )q t0 0 . This implies the desired normalization conditions (since we are dealing with the space-time continuum, the
normalization to a �-function should be employed):
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! � � � �� conservation of the total probabi� �lity

Having everything at hand, let us compute the normalized probability amplitude with the presence of friction in the cases
when �( )x � 0 (free particle) and �( )x x� 1

2
2� (linear harmonic oscillator).
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(21)

where the normalization factor

� �
� �

	( )
( )

sin ( )
.t t

t t

i t t1 0
2 1 0

1 0
� �

�

�

�

�� �

ch �

�
(22)

It is clear that
� taking the limit � � 0; the above amplitude reproduces the

free particle result (20),
� in the limit � � 0; the Schrödinger propagator for a har-

monic oscillator with frequency � is recovered.
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